Английская Википедия:Combinant

Материал из Онлайн справочника
Версия от 12:49, 20 февраля 2024; EducationBot (обсуждение | вклад) (Новая страница: «{{Английская Википедия/Панель перехода}} In the mathematical theory of probability, the '''combinants''' ''c''<sub>''n''</sub> of a random variable ''X'' are defined via the '''combinant-generating function''' ''G''(''t''), which is defined from the moment generating function ''M''(''z'') as :<math>G_X(t)=M_X(\log(1+t))</math> which can be expressed directly in terms of a random variable ''X''...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

In the mathematical theory of probability, the combinants cn of a random variable X are defined via the combinant-generating function G(t), which is defined from the moment generating function M(z) as

<math>G_X(t)=M_X(\log(1+t))</math>

which can be expressed directly in terms of a random variable X as

<math> G_X(t) := E\left[(1+t)^X\right], \quad t \in \mathbb{R}, </math>

wherever this expectation exists.

The nth combinant can be obtained as the nth derivatives of the logarithm of combinant generating function evaluated at –1 divided by n factorial:

<math> c_n = \frac{1}{n!} \frac{\partial ^n}{\partial t^n} \log(G (t)) \bigg|_{t=-1} </math>

Important features in common with the cumulants are:

References


Шаблон:Theory of probability distributions Шаблон:Probability-stub