Английская Википедия:Compound of five icosahedra

Материал из Онлайн справочника
Версия от 23:23, 20 февраля 2024; EducationBot (обсуждение | вклад) (Новая страница: «{{Английская Википедия/Панель перехода}} {{Short description|Polyhedral compound}} {| class=wikitable align="right" width="250" !bgcolor=#e7dcc3 colspan=2|Compound of five icosahedra |- |align=center colspan=2|200px |- |bgcolor=#e7dcc3|Type||Uniform compound |- |bgcolor=#e7dcc3|Index||UC<sub>47</sub> |- |bgcolor=#e7dcc3|Polyhedra||5 icosahedra |-...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

Шаблон:Short description

Compound of five icosahedra
Файл:UC47-5 icosahedra.png
Type Uniform compound
Index UC47
Polyhedra 5 icosahedra
Faces 40+60 Triangles
Edges 150
Vertices 60
Symmetry group icosahedral (Ih)
Subgroup restricting to one constituent pyritohedral (Th)
Файл:Compound of five icosahedra.stl
3D model of a compound of five icosahedra

The compound of five icosahedra is uniform polyhedron compound. It's composed of 5 icosahedra, rotated around a common axis. It has icosahedral symmetry Ih.

The triangles in this compound decompose into two orbits under action of the symmetry group: 40 of the triangles lie in coplanar pairs in icosahedral planes, while the other 60 lie in unique planes.

Cartesian coordinates

Cartesian coordinates for the vertices of this compound are all the cyclic permutations of

(0, ±2, ±2τ)
(±τ−1, ±1, ±(1+τ2))
(±τ, ±τ2, ±(2τ−1))

where τ = (1+Шаблон:Radic)/2 is the golden ratio (sometimes written φ).

References


Шаблон:Polyhedron-stub