Английская Википедия:Compound of three tetrahedra

Материал из Онлайн справочника
Версия от 23:24, 20 февраля 2024; EducationBot (обсуждение | вклад) (Новая страница: «{{Английская Википедия/Панель перехода}} {{Short description|Polyhedral compound}} {| class=wikitable align="right" width="300" !bgcolor=#e7dcc3 colspan=2|Compound of 3 digonal antiprisms |- |align=center colspan=2|280px |- |bgcolor=#e7dcc3|Type||Uniform<BR>compound |- |bgcolor=#e7dcc3|Uniform index||UC<sub>23</sub>...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

Шаблон:Short description

Compound of 3 digonal antiprisms
Файл:Compound of three tetrahedra.png
Type Uniform
compound
Uniform index UC23 (n=3, p=2, q=1)
Polyhedra 3 digonal antiprisms
(tetrahedra)
Faces 12 triangles
Edges 24
Vertices 12
Symmetry group D6d, order 12
Subgroup restricting
to one constituent
D2d, order 4

In geometry, a compound of three tetrahedra can be constructed by three tetrahedra rotated by 60 degree turns along an axis of the middle of an edge. It has dihedral symmetry, D3d, order 12. It is a uniform prismatic compound of antiprisms, UC23.

It is similar to the compound of two tetrahedra with 90 degree turns. It has the same vertex arrangement as the convex hexagonal antiprism.

Related polytopes

A subset of edges of this compound polyhedron can generate a compound regular skew polygon, with 3 skew squares. Each tetrahedron contains one skew square. This regular compound polygon containing the same symmetry as the uniform polyhedral compound.

Файл:Skew tetragons in compound of three digonal antiprisms.png

References

External links