Английская Википедия:Conchoid of Dürer

Материал из Онлайн справочника
Версия от 01:26, 21 февраля 2024; EducationBot (обсуждение | вклад) (Новая страница: «{{Английская Википедия/Панель перехода}} {{short description|Plane algebraic curve}} thumb|220px|right|Conchoid of Dürer, constructed by himself In geometry, the '''conchoid of Dürer''', also called '''Dürer's shell curve''', is a plane, algebraic curve, named after Albrecht Dürer and introduced in 1525. It is not a true conchoid. =...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

Шаблон:Short description

Файл:DuererMuschellinie.png
Conchoid of Dürer, constructed by himself

In geometry, the conchoid of Dürer, also called Dürer's shell curve, is a plane, algebraic curve, named after Albrecht Dürer and introduced in 1525. It is not a true conchoid.

Construction

Файл:Dconchoid2.svg
Construction of Dürer's conchoid

Suppose two perpendicular lines are given, with intersection point O. For concreteness we may assume that these are the coordinate axes and that O is the origin, that is (0, 0). Let points Шаблон:Math and Шаблон:Math move on the axes in such a way that Шаблон:Math, a constant. On the line Шаблон:Math, extended as necessary, mark points Шаблон:Math and Шаблон:Mvar at a fixed distance Шаблон:Mvar from Шаблон:Math. The locus of the points Шаблон:Math and Шаблон:Mvar is Dürer's conchoid.[1]

Equation

The equation of the conchoid in Cartesian form is

<math>2y^2(x^2+y^2) - 2by^2(x+y) + (b^2-3a^2)y^2 - a^2x^2 + 2a^2b(x+y) + a^2(a^2-b^2) = 0 . </math>

In parametric form the equation is given by

<math>\begin{align}

x &= \frac{b \cos(t)}{\cos(t) - \sin(t)} + a \cos(t),\\ y &= a \sin(t), \end{align}</math> where the parameter Шаблон:Mvar is measured in radians.[2]

Properties

The curve has two components, asymptotic to the lines <math>y = \pm a / \sqrt2</math>.[3] Each component is a rational curve. If a > b there is a loop, if a = b there is a cusp at (0,a).

Special cases include:

  • a = 0: the line y = 0;
  • b = 0: the line pair <math>y = \pm a / \sqrt2</math> together with the circle <math>x^2+y^2=a^2</math>;

The envelope of straight lines used in the construction form a parabola (as seen in Durer's original diagram above) and therefore the curve is a point-glissette formed by a line and one of its points sliding respectively against a parabola and one of its tangents.[4]

History

It was first described by the German painter and mathematician Albrecht Dürer (1471–1528) in his book Underweysung der Messung (Instruction in Measurement with Compass and Straightedge p. 38), calling it Ein muschellini (Conchoid or Shell). Dürer only drew one branch of the curve.

See also

References

Шаблон:Reflist

External links

Шаблон:MathWorld