Английская Википедия:Cotorsion group

Материал из Онлайн справочника
Версия от 22:03, 21 февраля 2024; EducationBot (обсуждение | вклад) (Новая страница: «{{Английская Википедия/Панель перехода}} {{Unreferenced|date=April 2021}} In abelian group theory, an abelian group is said to be '''cotorsion''' if every extension of it by a torsion-free group splits. If the group is <math>M</math>, this says that <math>Ext(F,M) = 0</math> for all torsion-free groups <math>F</math>. It suffices to check the condition for <math>F</math> the g...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

Шаблон:Unreferenced In abelian group theory, an abelian group is said to be cotorsion if every extension of it by a torsion-free group splits. If the group is <math>M</math>, this says that <math>Ext(F,M) = 0</math> for all torsion-free groups <math>F</math>. It suffices to check the condition for <math>F</math> the group of rational numbers.

More generally, a module M over a ring R is said to be a cotorsion module if Ext1(F,M)=0 for all flat modules F. This is equivalent to the definition for abelian groups (considered as modules over the ring Z of integers) because over Z flat modules are the same as torsion-free modules.

Some properties of cotorsion groups:

External links