Английская Википедия:Coulomb wave function

Материал из Онлайн справочника
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

Irregular Coulomb wave function G plotted from 0 to 20 with repulsive and attractive interactions in Mathematica 13.1
Irregular Coulomb wave function G plotted from 0 to 20 with repulsive and attractive interactions in Mathematica 13.1
Файл:Complex Plot of the regular Coulomb wave function from -2-2i to 2+2i in three dimensions created with Mathematica.svg
image of complex plot of regular Coulomb wave function added

In mathematics, a Coulomb wave function is a solution of the Coulomb wave equation, named after Charles-Augustin de Coulomb. They are used to describe the behavior of charged particles in a Coulomb potential and can be written in terms of confluent hypergeometric functions or Whittaker functions of imaginary argument.

Coulomb wave equation

The Coulomb wave equation for a single charged particle of mass <math>m</math> is the Schrödinger equation with Coulomb potential[1]

<math>\left(-\hbar^2\frac{\nabla^2}{2m}+\frac{Z \hbar c \alpha}{r}\right) \psi_{\vec{k}}(\vec{r}) = \frac{\hbar^2k^2}{2m} \psi_{\vec{k}}(\vec{r}) \,,</math>

where <math>Z=Z_1 Z_2</math> is the product of the charges of the particle and of the field source (in units of the elementary charge, <math>Z=-1</math> for the hydrogen atom), <math>\alpha</math> is the fine-structure constant, and <math>\hbar^2k^2/(2m)</math> is the energy of the particle. The solution, which is the Coulomb wave function, can be found by solving this equation in parabolic coordinates

<math>\xi= r + \vec{r}\cdot\hat{k}, \quad \zeta= r - \vec{r}\cdot\hat{k} \qquad (\hat{k} = \vec{k}/k) \,.</math>

Depending on the boundary conditions chosen, the solution has different forms. Two of the solutions are[2][3]

<math>\psi_{\vec{k}}^{(\pm)}(\vec{r}) = \Gamma(1\pm i\eta) e^{-\pi\eta/2} e^{i\vec{k}\cdot\vec{r}} M(\mp i\eta, 1, \pm ikr - i\vec{k}\cdot\vec{r}) \,,</math>

where <math>M(a,b,z) \equiv {}_1\!F_1(a;b;z)</math> is the confluent hypergeometric function, <math>\eta = Zmc\alpha/(\hbar k)</math> and <math>\Gamma(z)</math> is the gamma function. The two boundary conditions used here are

<math>\psi_{\vec{k}}^{(\pm)}(\vec{r}) \rightarrow e^{i\vec{k}\cdot\vec{r}} \qquad (\vec{k}\cdot\vec{r} \rightarrow \pm\infty) \,,</math>

which correspond to <math>\vec{k}</math>-oriented plane-wave asymptotic states before or after its approach of the field source at the origin, respectively. The functions <math>\psi_{\vec{k}}^{(\pm)}</math> are related to each other by the formula

<math>\psi_{\vec{k}}^{(+)} = \psi_{-\vec{k}}^{(-)*} \,.</math>

Partial wave expansion

The wave function <math>\psi_{\vec{k}}(\vec{r})</math> can be expanded into partial waves (i.e. with respect to the angular basis) to obtain angle-independent radial functions <math>w_\ell(\eta,\rho)</math>. Here <math>\rho=kr</math>.

<math>\psi_{\vec{k}}(\vec{r}) = \frac{4\pi}{r} \sum_{\ell=0}^\infty \sum_{m=-\ell}^\ell i^\ell w_{\ell}(\eta,\rho) Y_\ell^m (\hat{r}) Y_{\ell}^{m\ast} (\hat{k}) \,.</math>

A single term of the expansion can be isolated by the scalar product with a specific spherical harmonic

<math>\psi_{k\ell m}(\vec{r}) = \int \psi_{\vec{k}}(\vec{r}) Y_\ell^m (\hat{k}) d\hat{k} = R_{k\ell}(r) Y_\ell^m(\hat{r}), \qquad R_{k\ell}(r) = 4\pi i^\ell w_\ell(\eta,\rho)/r.</math>

The equation for single partial wave <math>w_\ell(\eta,\rho)</math> can be obtained by rewriting the laplacian in the Coulomb wave equation in spherical coordinates and projecting the equation on a specific spherical harmonic <math>Y_\ell^m(\hat{r})</math>

<math>\frac{d^2 w_\ell}{d\rho^2}+\left(1-\frac{2\eta}{\rho}-\frac{\ell(\ell+1)}{\rho^2}\right)w_\ell=0 \,.</math>

The solutions are also called Coulomb (partial) wave functions or spherical Coulomb functions. Putting <math>z=-2i\rho</math> changes the Coulomb wave equation into the Whittaker equation, so Coulomb wave functions can be expressed in terms of Whittaker functions with imaginary arguments <math>M_{-i\eta,\ell+1/2}(-2i\rho)</math> and <math>W_{-i\eta,\ell+1/2}(-2i\rho)</math>. The latter can be expressed in terms of the confluent hypergeometric functions <math>M</math> and <math>U</math>. For <math>\ell\in\mathbb{Z}</math>, one defines the special solutions [4]

<math>H_\ell^{(\pm)}(\eta,\rho) = \mp 2i(-2)^{\ell}e^{\pi\eta/2} e^{\pm i \sigma_\ell}\rho^{\ell+1}e^{\pm i\rho}U(\ell+1\pm i\eta,2\ell+2,\mp 2i\rho) \,,</math>

where

<math>\sigma_\ell = \arg \Gamma(\ell+1+i \eta)</math>

is called the Coulomb phase shift. One also defines the real functions

<math>F_\ell(\eta,\rho) = \frac{1}{2i} \left(H_\ell^{(+)}(\eta,\rho)-H_\ell^{(-)}(\eta,\rho) \right) \,,</math>
Regular Coulomb wave function F plotted from 0 to 20 with repulsive and attractive interactions in Mathematica 13.1
Regular Coulomb wave function F plotted from 0 to 20 with repulsive and attractive interactions in Mathematica 13.1
<math>G_\ell(\eta,\rho) = \frac{1}{2} \left(H_\ell^{(+)}(\eta,\rho)+H_\ell^{(-)}(\eta,\rho) \right) \,.</math>

In particular one has

<math>F_\ell(\eta,\rho) = \frac{2^\ell e^{-\pi\eta/2}|\Gamma(\ell+1+i\eta)|}{(2\ell+1)!}\rho^{\ell+1}e^{i\rho}M(\ell+1+i\eta,2\ell+2,-2i\rho) \,.</math>

The asymptotic behavior of the spherical Coulomb functions <math>H_\ell^{(\pm)}(\eta,\rho)</math>, <math>F_\ell(\eta,\rho)</math>, and <math>G_\ell(\eta,\rho)</math> at large <math>\rho</math> is

<math>H_\ell^{(\pm)}(\eta,\rho) \sim e^{\pm i \theta_\ell(\rho)} \,,</math>
<math>F_\ell(\eta,\rho) \sim \sin \theta_\ell(\rho) \,,</math>
<math>G_\ell(\eta,\rho) \sim \cos \theta_\ell(\rho) \,,</math>

where

<math>\theta_\ell(\rho) = \rho - \eta \log(2\rho) -\frac{1}{2} \ell \pi + \sigma_\ell \,.</math>

The solutions <math>H_\ell^{(\pm)}(\eta,\rho)</math> correspond to incoming and outgoing spherical waves. The solutions <math>F_\ell(\eta,\rho)</math> and <math>G_\ell(\eta,\rho)</math> are real and are called the regular and irregular Coulomb wave functions. In particular one has the following partial wave expansion for the wave function <math>\psi_{\vec{k}}^{(+)}(\vec{r})</math> [5]

<math>\psi_{\vec{k}}^{(+)}(\vec{r}) = \frac{4\pi}{\rho} \sum_{\ell=0}^\infty \sum_{m=-\ell}^\ell i^\ell e^{i \sigma_\ell} F_\ell(\eta,\rho) Y_\ell^m (\hat{r}) Y_{\ell}^{m\ast} (\hat{k}) \,,</math>

Properties of the Coulomb function

The radial parts for a given angular momentum are orthonormal. When normalized on the wave number scale (k-scale), the continuum radial wave functions satisfy [6][7]

<math>\int_0^\infty R_{k\ell}^\ast(r) R_{k'\ell}(r) r^2 dr = \delta(k-k')</math>

Other common normalizations of continuum wave functions are on the reduced wave number scale (<math>k/2\pi</math>-scale),

<math>\int_0^\infty R_{k\ell}^\ast(r) R_{k'\ell}(r) r^2 dr = 2\pi \delta(k-k') \,,</math>

and on the energy scale

<math>\int_0^\infty R_{E\ell}^\ast(r) R_{E'\ell}(r) r^2 dr = \delta(E-E') \,.</math>

The radial wave functions defined in the previous section are normalized to

<math>\int_0^\infty R_{k\ell}^\ast(r) R_{k'\ell}(r) r^2 dr = \frac{(2\pi)^3}{k^2} \delta(k-k') </math>

as a consequence of the normalization

<math>\int \psi^{\ast}_{\vec{k}}(\vec{r}) \psi_{\vec{k}'}(\vec{r}) d^3r = (2\pi)^3 \delta(\vec{k}-\vec{k}') \,.</math>

The continuum (or scattering) Coulomb wave functions are also orthogonal to all Coulomb bound states[8]

<math>\int_0^\infty R_{k\ell}^\ast(r) R_{n\ell}(r) r^2 dr = 0 </math>

due to being eigenstates of the same hermitian operator (the hamiltonian) with different eigenvalues.

Further reading

References

Шаблон:Reflist