Английская Википедия:Cramer–Castillon problem

Материал из Онлайн справочника
Версия от 05:51, 22 февраля 2024; EducationBot (обсуждение | вклад) (Новая страница: «{{Английская Википедия/Панель перехода}} thumb|320px|right|Two solutions whose sides pass through <math>A, B, C</math> In geometry, the '''Cramer–Castillon problem''' is a problem stated by the Swiss mathematician Gabriel Cramer solved by the Italian mathematician, resident in Berlin, Jean de Castillon in 1776.<ref>{{smallcaps|Stark}}...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

Файл:Cramer castillon problem.svg
Two solutions whose sides pass through <math>A, B, C</math>

In geometry, the Cramer–Castillon problem is a problem stated by the Swiss mathematician Gabriel Cramer solved by the Italian mathematician, resident in Berlin, Jean de Castillon in 1776.[1]

The problem consists of (see the image):

Given a circle <math>Z</math> and three points <math>A, B, C</math> in the same plane and not on <math>Z</math>, to construct every possible triangle inscribed in <math>Z</math> whose sides (or their elongations) pass through <math>A, B, C</math> respectively.

Centuries before, Pappus of Alexandria had solved a special case: when the three points are collinear. But the general case had the reputation of being very difficult.[2]

After the geometrical construction of Castillon, Lagrange found an analytic solution, easier than Castillon's. In the beginning of the 19th century, Lazare Carnot generalized it to <math>n</math> points.[3]

References

Шаблон:Reflist

Bibliography

External links