Английская Википедия:Critical point (thermodynamics)

Материал из Онлайн справочника
Версия от 11:13, 22 февраля 2024; EducationBot (обсуждение | вклад) (Новая страница: «{{Английская Википедия/Панель перехода}} {{Short description|Temperature and pressure point where phase boundaries disappear}} thumb|upright=1.5| {{ordered list |Subcritical [[ethane, liquid and gas phase coexist. |Critical point (32.17 °C, 48.72 bar), opalescence. |Supercritical ethane, fluid.<ref>{{cite thesis |first=Sven |last=Horstmann |title=Theoretische und expe...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

Шаблон:Short description

Файл:CriticalPointMeasurementEthane.jpg
Шаблон:Ordered list

In thermodynamics, a critical point (or critical state) is the end point of a phase equilibrium curve. One example is the liquid–vapor critical point, the end point of the pressure–temperature curve that designates conditions under which a liquid and its vapor can coexist. At higher temperatures, the gas cannot be liquefied by pressure alone. At the critical point, defined by a critical temperature Tc and a critical pressure pc, phase boundaries vanish. Other examples include the liquid–liquid critical points in mixtures, and the ferromagnet–paramagnet transition (Curie temperature) in the absence of an external magnetic field.[1]

Liquid–vapor critical point

Overview

Файл:Phase-diag2.svg
The liquid–vapor critical point in a pressure–temperature phase diagram is at the high-temperature extreme of the liquid–gas phase boundary. The dashed green line shows the anomalous behavior of water.

For simplicity and clarity, the generic notion of critical point is best introduced by discussing a specific example, the vapor–liquid critical point. This was the first critical point to be discovered, and it is still the best known and most studied one.

The figure to the right shows the schematic P-T diagram of a pure substance (as opposed to mixtures, which have additional state variables and richer phase diagrams, discussed below). The commonly known phases solid, liquid and vapor are separated by phase boundaries, i.e. pressure–temperature combinations where two phases can coexist. At the triple point, all three phases can coexist. However, the liquid–vapor boundary terminates in an endpoint at some critical temperature Tc and critical pressure pc. This is the critical point.

The critical point of water occurs at Шаблон:Convert and Шаблон:Convert.[2]

In the vicinity of the critical point, the physical properties of the liquid and the vapor change dramatically, with both phases becoming even more similar. For instance, liquid water under normal conditions is nearly incompressible, has a low thermal expansion coefficient, has a high dielectric constant, and is an excellent solvent for electrolytes. Near the critical point, all these properties change into the exact opposite: water becomes compressible, expandable, a poor dielectric, a bad solvent for electrolytes, and mixes more readily with nonpolar gases and organic molecules.[3]

At the critical point, only one phase exists. The heat of vaporization is zero. There is a stationary inflection point in the constant-temperature line (critical isotherm) on a PV diagram. This means that at the critical point:[4][5][6]

<math>\left(\frac{\partial p}{\partial V}\right)_T = 0,</math>
<math>\left(\frac{\partial^2p}{\partial V^2}\right)_T = 0.</math>
Файл:Real Gas Isotherms.svg
Isotherms of a gas. The red line is the critical isotherm, with critical point K. The dashed lines represent parts of isotherms which are forbidden since the gradient would be positive, giving the gas in this region a negative compressibility.

Above the critical point there exists a state of matter that is continuously connected with (can be transformed without phase transition into) both the liquid and the gaseous state. It is called supercritical fluid. The common textbook knowledge that all distinction between liquid and vapor disappears beyond the critical point has been challenged by Fisher and Widom,[7] who identified a pT line that separates states with different asymptotic statistical properties (Fisher–Widom line).

SometimesШаблон:Ambiguous the critical point does not manifest in most thermodynamic or mechanical properties, but is "hidden" and reveals itself in the onset of inhomogeneities in elastic moduli, marked changes in the appearance and local properties of non-affine droplets, and a sudden enhancement in defect pair concentration.[8]

History

Файл:Critical carbon dioxide.jpg
Critical carbon dioxide exuding fog while cooling from supercritical to critical temperature.

The existence of a critical point was first discovered by Charles Cagniard de la Tour in 1822[9][10] and named by Dmitri Mendeleev in 1860[11][12] and Thomas Andrews in 1869.[13] Cagniard showed that CO2 could be liquefied at 31 °C at a pressure of 73 atm, but not at a slightly higher temperature, even under pressures as high as 3000 atm.

Theory

Solving the above condition <math>(\partial p / \partial V)_T = 0</math> for the van der Waals equation, one can compute the critical point as[4]

<math>T_\text{c} = \frac{8a}{27Rb},
 \quad V_\text{c} = 3nb,
 \quad p_\text{c} = \frac{a}{27b^2}.</math>

However, the van der Waals equation, based on a mean-field theory, does not hold near the critical point. In particular, it predicts wrong scaling laws.

To analyse properties of fluids near the critical point, reduced state variables are sometimes defined relative to the critical properties[14]

<math>T_\text{r} = \frac{T}{T_\text{c}},
 \quad p_\text{r} = \frac{p}{p_\text{c}},
 \quad V_\text{r} = \frac{V}{RT_\text{c} / p_\text{c}}.</math>

The principle of corresponding states indicates that substances at equal reduced pressures and temperatures have equal reduced volumes. This relationship is approximately true for many substances, but becomes increasingly inaccurate for large values of pr.

For some gases, there is an additional correction factor, called Newton's correction, added to the critical temperature and critical pressure calculated in this manner. These are empirically derived values and vary with the pressure range of interest.[15]

Table of liquid–vapor critical temperature and pressure for selected substances

Шаблон:See also

Substance[16][17] Critical temperature Critical pressure (absolute)
Argon Шаблон:Sort Шаблон:Sort
Ammonia (NH3)[18] Шаблон:Sort Шаблон:Sort
R-134a Шаблон:Sort Шаблон:Sort
R-410A Шаблон:Sort Шаблон:Sort
Bromine Шаблон:Sort Шаблон:Sort
Caesium Шаблон:Sort Шаблон:Sort
Chlorine Шаблон:Sort Шаблон:Sort
Ethane (Шаблон:Chem) Шаблон:Sort Шаблон:Sort
Ethanol (Шаблон:Chem) Шаблон:Sort Шаблон:Sort
Fluorine Шаблон:Sort Шаблон:Sort
Helium Шаблон:Sort Шаблон:Sort
Hydrogen Шаблон:Sort Шаблон:Sort
Krypton Шаблон:Sort Шаблон:Sort
Methane (CH4) Шаблон:Sort Шаблон:Sort
Neon Шаблон:Sort Шаблон:Sort
Nitrogen Шаблон:Sort Шаблон:Sort
Oxygen (O2) Шаблон:Sort Шаблон:Sort
Carbon dioxide (CO2) Шаблон:Sort Шаблон:Sort
Nitrous oxide (N2O) Шаблон:Sort Шаблон:Sort
Sulfuric acid (H2SO4) Шаблон:Sort Шаблон:Sort
Xenon Шаблон:Sort Шаблон:Sort
Lithium Шаблон:Sort Шаблон:Sort
Mercury Шаблон:Sort Шаблон:Sort
Sulfur Шаблон:Sort Шаблон:Sort
Iron Шаблон:Sort
Gold Шаблон:Sort Шаблон:Sort
Aluminium Шаблон:Sort
Water (H2O)[2][19] Шаблон:Sort Шаблон:Sort

Mixtures: liquid–liquid critical point

Файл:LCST-UCST plot.svg
A plot of typical polymer solution phase behavior including two critical points: a LCST and an UCST

The liquid–liquid critical point of a solution, which occurs at the critical solution temperature, occurs at the limit of the two-phase region of the phase diagram. In other words, it is the point at which an infinitesimal change in some thermodynamic variable (such as temperature or pressure) leads to separation of the mixture into two distinct liquid phases, as shown in the polymer–solvent phase diagram to the right. Two types of liquid–liquid critical points are the upper critical solution temperature (UCST), which is the hottest point at which cooling induces phase separation, and the lower critical solution temperature (LCST), which is the coldest point at which heating induces phase separation.

Mathematical definition

From a theoretical standpoint, the liquid–liquid critical point represents the temperature–concentration extremum of the spinodal curve (as can be seen in the figure to the right). Thus, the liquid–liquid critical point in a two-component system must satisfy two conditions: the condition of the spinodal curve (the second derivative of the free energy with respect to concentration must equal zero), and the extremum condition (the third derivative of the free energy with respect to concentration must also equal zero or the derivative of the spinodal temperature with respect to concentration must equal zero).

See also

Шаблон:Div col

Шаблон:Div col end

References

Шаблон:Reflist

Further reading

Шаблон:Phase of matter Шаблон:Authority control

  1. Шаблон:Cite book
  2. 2,0 2,1 Шаблон:Cite journal
  3. Anisimov, Sengers, Levelt Sengers (2004): Near-critical behavior of aqueous systems. Chapter 2 in Aqueous System at Elevated Temperatures and Pressures Palmer et al., eds. Elsevier.
  4. 4,0 4,1 P. Atkins and J. de Paula, Physical Chemistry, 8th ed. (W. H. Freeman 2006), p. 21.
  5. K. J. Laidler and J. H. Meiser, Physical Chemistry (Benjamin/Cummings 1982), p. 27.
  6. P. A. Rock, Chemical Thermodynamics (MacMillan 1969), p. 123.
  7. Шаблон:Cite journal
  8. Шаблон:Cite journal
  9. Шаблон:Cite journal
  10. Berche, B., Henkel, M., Kenna, R (2009) Critical phenomena: 150 years since Cagniard de la Tour. Journal of Physical Studies 13 (3), pp. 3001-1–3001-4.
  11. Mendeleev called the critical point the "absolute temperature of boiling" (Шаблон:Lang-ru; Шаблон:Lang-de).
    • Шаблон:Cite journal The "absolute temperature of boiling" is defined on p. 151. Available at Wikimedia
    • German translation: Шаблон:Cite journal The "absolute temperature of boiling" is defined on p. 11: "Шаблон:Lang (As the "absolute temperature of boiling" we must regard the point at which (1) the cohesion of the liquid equals 0° and a2 = 0 [where a2 is the coefficient of capillarity, p. 6], at which (2) the latent heat of vaporization also equals zero, and at which (3) the liquid is transformed into vapor, independently of the pressure and the volume.)
    • In 1870, Mendeleev asserted, against Thomas Andrews, his priority regarding the definition of the critical point: Шаблон:Cite journal
  12. Landau, Lifshitz, Theoretical Physics, Vol. V: Statistical Physics, Ch. 83 [German edition 1984].
  13. Шаблон:Cite journal The term "critical point" appears on page 588.
  14. Шаблон:Cite book
  15. Шаблон:Cite journal
  16. Шаблон:Cite book
  17. Шаблон:Cite book
  18. Шаблон:Cite web
  19. Шаблон:Cite web