Английская Википедия:Curium compounds

Материал из Онлайн справочника
Версия от 07:46, 23 февраля 2024; EducationBot (обсуждение | вклад) (Новая страница: «{{Английская Википедия/Панель перехода}} '''Curium compounds''' are compounds containing the element curium (Cm). Curium usually forms compounds in the +3 oxidation state, although compounds with curium in the +4, +5 and +6 oxidation states are also known. == Oxides == Curium readily reacts with oxygen forming mostly Cm<sub>2</sub>O<sub>3</sub> and CmO<sub>2</sub> oxides,<ref name="lenntech">[http://www.lenntech.de/pse/...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

Curium compounds are compounds containing the element curium (Cm). Curium usually forms compounds in the +3 oxidation state, although compounds with curium in the +4, +5 and +6 oxidation states are also known.

Oxides

Curium readily reacts with oxygen forming mostly Cm2O3 and CmO2 oxides,[1] but the divalent oxide CmO is also known.[2] Black CmO2 can be obtained by burning curium oxalate (Шаблон:Chem), nitrate (Шаблон:Chem), or hydroxide in pure oxygen.[3][4] Upon heating to 600–650 °C in vacuum (about 0.01 Pa), it transforms into the whitish Cm2O3:[3][5]

<chem>4CmO2 ->[\Delta T] 2Cm2O3 + O2</chem>.

Or, Cm2O3 can be obtained by reducing CmO2 with molecular hydrogen:[6]

<chem>2CmO2 + H2 -> Cm2O3 + H2O</chem>

Also, a number of ternary oxides of the type M(II)CmO3 are known, where M stands for a divalent metal, such as barium.[7]

Thermal oxidation of trace quantities of curium hydride (CmH2–3) has been reported to give a volatile form of CmO2 and the volatile trioxide CmO3, one of two known examples of the very rare +6 state for curium.[8] Another observed species was reported to behave similar to a supposed plutonium tetroxide and was tentatively characterized as CmO4, with curium in the extremely rare +8 state;[9] but new experiments seem to indicate that CmO4 does not exist, and have cast doubt on the existence of PuO4 as well.[10]

Halides

The colorless curium(III) fluoride (CmF3) can be made by adding fluoride ions into curium(III)-containing solutions. The brown tetravalent curium(IV) fluoride (CmF4) on the other hand is only obtained by reacting curium(III) fluoride with molecular fluorine:[11]

<math>\mathrm{2\ CmF_3\ +\ F_2\ \longrightarrow\ 2\ CmF_4}</math>

A series of ternary fluorides are known of the form A7Cm6F31 (A = alkali metal).[12]

The colorless curium(III) chloride (CmCl3) is made by reacting curium hydroxide (Cm(OH)3) with anhydrous hydrogen chloride gas. It can be further turned into other halides such as curium(III) bromide (colorless to light green) and curium(III) iodide (colorless), by reacting it with the ammonia salt of the corresponding halide at temperatures of ~400–450°C:[13]

<math>\mathrm{CmCl_3\ +\ 3\ NH_4I\ \longrightarrow \ CmI_3\ +\ 3\ NH_4Cl}</math>

Or, one can heat curium oxide to ~600°C with the corresponding acid (such as hydrobromic for curium bromide).[14][15] Vapor phase hydrolysis of curium(III) chloride gives curium oxychloride:[16]

<math>\mathrm{CmCl_3\ +\ \ H_2O\ \longrightarrow \ CmOCl\ +\ 2\ HCl}</math>

Chalcogenides and pnictides

Sulfides, selenides and tellurides of curium have been obtained by treating curium with gaseous sulfur, selenium or tellurium in vacuum at elevated temperature.[17][18] Curium pnictides of the type CmX are known for nitrogen, phosphorus, arsenic and antimony.[11] They can be prepared by reacting either curium(III) hydride (CmH3) or metallic curium with these elements at elevated temperature.[19]

Organocurium compounds and biological aspects

Файл:Uranocene-3D-balls.png
Predicted curocene structure

Organometallic complexes analogous to uranocene are known also for other actinides, such as thorium, protactinium, neptunium, plutonium and americium. Molecular orbital theory predicts a stable "curocene" complex (η8-C8H8)2Cm, but it has not been reported experimentally yet.[20][21]

Formation of the complexes of the type Шаблон:Chem (BTP = 2,6-di(1,2,4-triazin-3-yl)pyridine), in solutions containing n-C3H7-BTP and Cm3+ ions has been confirmed by EXAFS. Some of these BTP-type complexes selectively interact with curium and thus are useful for separating it from lanthanides and another actinides.[22][23] Dissolved Cm3+ ions bind with many organic compounds, such as hydroxamic acid,[24] urea,[25] fluorescein[26] and adenosine triphosphate.[27] Many of these compounds are related to biological activity of various microorganisms. The resulting complexes show strong yellow-orange emission under UV light excitation, which is convenient not only for their detection, but also for studying interactions between the Cm3+ ion and the ligands via changes in the half-life (of the order ~0.1 ms) and spectrum of the fluorescence.[28][24][25][26][27]

Curium has no biological significance.[29] There are a few reports on biosorption of Cm3+ by bacteria and archaea, but no evidence for incorporation of curium into them.[30][31]

See also

References

Шаблон:Reflist

Шаблон:Curium compounds

  1. Curium (in German)
  2. Holleman, p. 1972
  3. 3,0 3,1 Шаблон:Cite journal
  4. Greenwood, p. 1268
  5. Шаблон:Cite journal
  6. Шаблон:Cite journal
  7. Шаблон:Cite journal
  8. Шаблон:Cite journal
  9. Шаблон:Cite journal
  10. Шаблон:Cite journal
  11. 11,0 11,1 Morss, L. R.; Edelstein, N. M. and Fugere, J. (eds): The Chemistry of the Actinide Elements and transactinides, volume 3, Springer-Verlag, Dordrecht 2006, Шаблон:ISBN.
  12. Шаблон:Cite journal
  13. Шаблон:Cite journal
  14. Шаблон:Cite journal
  15. Шаблон:Cite journal
  16. Шаблон:Cite journal
  17. Troc, R. Actinide Monochalcogenides, Volume 27, Springer, 2009 Шаблон:ISBN, p. 4
  18. Шаблон:Cite journal
  19. Lumetta, G. J.; Thompson, M. C.; Penneman, R. A.; Eller, P. G. Curium Шаблон:Webarchive, Chapter Nine in Radioanalytical Chemistry, Springer, 2004, pp. 1420–1421. Шаблон:ISBN, Шаблон:ISBN
  20. Elschenbroich, Ch. Organometallic Chemistry, 6th edition, Wiesbaden 2008, Шаблон:ISBN, p. 589
  21. Шаблон:Cite journal
  22. Шаблон:Cite journal
  23. Шаблон:Cite journal
  24. 24,0 24,1 Шаблон:Cite journal
  25. 25,0 25,1 Шаблон:Cite journal
  26. 26,0 26,1 Шаблон:Cite journal
  27. 27,0 27,1 Шаблон:Cite journal
  28. Bünzli, J.-C. G. and Choppin, G. R. Lanthanide probes in life, chemical, and earth sciences: theory and practice, Elsevier, Amsterdam, 1989 Шаблон:ISBN
  29. Шаблон:Cite web
  30. Шаблон:Cite journal
  31. Шаблон:Cite journal