Английская Википедия:Dawson–Gärtner theorem

Материал из Онлайн справочника
Версия от 11:29, 25 февраля 2024; EducationBot (обсуждение | вклад) (Новая страница: «{{Английская Википедия/Панель перехода}} In mathematics, the '''Dawson–Gärtner theorem''' is a result in large deviations theory. Heuristically speaking, the Dawson–Gärtner theorem allows one to transport a large deviation principle on a “smaller” topological space to a “larger” one. ==Statement of the theorem== Let (''Y''<sub>''j''</sub>)<sub>''j''∈''J''</sub> be a projective syste...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

In mathematics, the Dawson–Gärtner theorem is a result in large deviations theory. Heuristically speaking, the Dawson–Gärtner theorem allows one to transport a large deviation principle on a “smaller” topological space to a “larger” one.

Statement of the theorem

Let (Yj)jJ be a projective system of Hausdorff topological spaces with maps pij : Yj → Yi. Let X be the projective limit (also known as the inverse limit) of the system (Yjpij)i,jJ, i.e.

<math>X = \varprojlim_{j \in J} Y_{j} = \left\{ \left. y = (y_{j})_{j \in J} \in Y = \prod_{j \in J} Y_{j} \right| i < j \implies y_{i} = p_{ij} (y_{j}) \right\}.</math>

Let (με)ε>0 be a family of probability measures on X. Assume that, for each j ∈ J, the push-forward measures (pjμε)ε>0 on Yj satisfy the large deviation principle with good rate function Ij : Yj → R ∪ {+∞}. Then the family (με)ε>0 satisfies the large deviation principle on X with good rate function I : X → R ∪ {+∞} given by

<math>I(x) = \sup_{j \in J} I_{j}(p_{j}(x)).</math>

References