Английская Википедия:Decagram (geometry)

Материал из Онлайн справочника
Версия от 21:22, 25 февраля 2024; EducationBot (обсуждение | вклад) (Новая страница: «{{Английская Википедия/Панель перехода}} {{short description|10-pointed star polygon}} {{Regular polygon db|Regular star polygon stat table|p10/3}} {{Star polygons}} thumb|Decagrams are common in [[Islamic geometric patterns, here in a Quran from the 14th century.]] In geometry, a '''decagram''' is a 10-point star polygon. There is one regular decagram, containing the verti...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

Шаблон:Short description Шаблон:Regular polygon db Шаблон:Star polygons

Файл:Sultan Barquq's Qur'an decagram.jpg
Decagrams are common in Islamic geometric patterns, here in a Quran from the 14th century.

In geometry, a decagram is a 10-point star polygon. There is one regular decagram, containing the vertices of a regular decagon, but connected by every third point. Its Schläfli symbol is {10/3}.[1]

The name decagram combines a numeral prefix, deca-, with the Greek suffix -gram. The -gram suffix derives from γραμμῆς (grammēs) meaning a line.[2]

Regular decagram

For a regular decagram with unit edge lengths, the proportions of the crossing points on each edge are as shown below.

Файл:Decagram lengths.svg

Applications

Decagrams have been used as one of the decorative motifs in girih tiles.[3]

Файл:Girih tiles.svg

Isotoxal variations

An isotoxal polygon has two vertices and one edge. There are isotoxal decagram forms, which alternates vertices at two radii. Each form has a freedom of one angle. The first is a variation of a double-wound of a pentagon {5}, and last is a variation of a double-wound of a pentagram {5/2}. The middle is a variation of a regular decagram, {10/3}.

Файл:Intersecting isotoxal decagon2.svg
{(5/2)α}
Файл:Isotoxal decagram.svg
{(5/3)α}
Файл:Intersecting isotoxal decagon.svg
{(5/4)α}

Related figures

A regular decagram is a 10-sided polygram, represented by symbol {10/n}, containing the same vertices as regular decagon. Only one of these polygrams, {10/3} (connecting every third point), forms a regular star polygon, but there are also three ten-vertex polygrams which can be interpreted as regular compounds:

Form Convex Compound Star polygon Compounds
Image Файл:Regular polygon 10.svg Файл:Regular star figure 2(5,1).svg Файл:Regular star polygon 10-3.svg Файл:Regular star figure 2(5,2).svg Файл:Regular star figure 5(2,1).svg
Symbol {10/1} = {10} {10/2} = 2{5} {10/3} {10/4} = 2{5/2} {10/5} = 5{2}

{10/2} can be seen as the 2D equivalent of the 3D compound of dodecahedron and icosahedron and 4D compound of 120-cell and 600-cell; that is, the compound of two pentagonal polytopes in their respective dual positions.

{10/4} can be seen as the two-dimensional equivalent of the three-dimensional compound of small stellated dodecahedron and great dodecahedron or compound of great icosahedron and great stellated dodecahedron through similar reasons. It has six four-dimensional analogues, with two of these being compounds of two self-dual star polytopes, like the pentagram itself; the compound of two great 120-cells and the compound of two grand stellated 120-cells. A full list can be seen at Polytope compound#Compounds with duals.

Deeper truncations of the regular pentagon and pentagram can produce intermediate star polygon forms with ten equally spaced vertices and two edge lengths that remain vertex-transitive (any two vertices can be transformed into each other by a symmetry of the figure).[6][7][8]

Isogonal truncations of pentagon and pentagram
Quasiregular Isogonal Quasiregular
Double covering
Файл:Regular polygon truncation 5 1.svg
t{5} = {10}
Файл:Regular polygon truncation 5 2.svg Файл:Regular polygon truncation 5 3.svg Файл:Regular star polygon 5-2.svg
t{5/4} = {10/4} = 2{5/2}
Файл:Regular star truncation 5-3 1.svg
t{5/3} = {10/3}
Файл:Regular star truncation 5-3 2.svg Файл:Regular star truncation 5-3 3.svg Файл:Regular polygon 5.svg
t{5/2} = {10/2} = 2{5}

See also

References

Шаблон:Commons category Шаблон:Reflist

Шаблон:Polygons

  1. Шаблон:Citation.
  2. γραμμή, Henry George Liddell, Robert Scott, A Greek-English Lexicon, on Perseus
  3. Шаблон:Citation.
  4. Regular polytopes, p 93-95, regular star polygons, regular star compounds
  5. Coxeter, Introduction to Geometry, second edition, 2.8 Star polygons p.36-38
  6. The Lighter Side of Mathematics: Proceedings of the Eugène Strens Memorial Conference on Recreational Mathematics and its History, (1994), Metamorphoses of polygons, Branko Grünbaum.
  7. *Шаблон:Cite journal
  8. Coxeter, The Densities of the Regular polytopes I, p.43 If d is odd, the truncation of the polygon {p/q} is naturally {2n/d}. But if not, it consists of two coincident {n/(d/2)}'s; two, because each side arises from an original side and once from an original vertex. Thus the density of a polygon is unaltered by truncation.