Английская Википедия:Dedekind group

Материал из Онлайн справочника
Версия от 23:11, 25 февраля 2024; EducationBot (обсуждение | вклад) (Новая страница: «{{Английская Википедия/Панель перехода}} In group theory, a '''Dedekind group''' is a group ''G'' such that every subgroup of ''G'' is normal. All abelian groups are Dedekind groups. A non-abelian Dedekind group is called a '''Hamiltonian group'''.<ref>{{cite book|author=Hall |title=The theory of groups|year=1999|url={{Google books|plainurl=y|id=oyxnWF9ssI8C|page=190|tex...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

In group theory, a Dedekind group is a group G such that every subgroup of G is normal. All abelian groups are Dedekind groups. A non-abelian Dedekind group is called a Hamiltonian group.[1]

The most familiar (and smallest) example of a Hamiltonian group is the quaternion group of order 8, denoted by Q8. Dedekind and Baer have shown (in the finite and respectively infinite order case) that every Hamiltonian group is a direct product of the form Шаблон:Nowrap, where B is an elementary abelian 2-group, and D is a torsion abelian group with all elements of odd order.

Dedekind groups are named after Richard Dedekind, who investigated them in Шаблон:Harv, proving a form of the above structure theorem (for finite groups). He named the non-abelian ones after William Rowan Hamilton, the discoverer of quaternions.

In 1898 George Miller delineated the structure of a Hamiltonian group in terms of its order and that of its subgroups. For instance, he shows "a Hamilton group of order 2a has Шаблон:Nowrap quaternion groups as subgroups". In 2005 Horvat et al[2] used this structure to count the number of Hamiltonian groups of any order Шаблон:Nowrap where o is an odd integer. When Шаблон:Nowrap then there are no Hamiltonian groups of order n, otherwise there are the same number as there are Abelian groups of order o.

Notes

Шаблон:Reflist

References