Английская Википедия:Density of air
Шаблон:Short description The density of air or atmospheric density, denoted ρ, is the mass per unit volume of Earth's atmosphere. Air density, like air pressure, decreases with increasing altitude. It also changes with variations in atmospheric pressure, temperature and humidity. At 101.325 kPa (abs) and 20 °C (68 °F), air has a density of approximately Шаблон:Cvt, according to the International Standard Atmosphere (ISA). At 101.325Шаблон:NbspkPa (abs) and Шаблон:Cvt, air has a density of approximately Шаблон:Cvt, which is about Шаблон:Fract that of water, according to the International Standard Atmosphere (ISA).Шаблон:Citation needed Pure liquid water is Шаблон:Cvt.
Air density is a property used in many branches of science, engineering, and industry, including aeronautics;[1][2][3] gravimetric analysis;[4] the air-conditioning industry[5]; atmospheric research and meteorology;[6][7][8] agricultural engineering (modeling and tracking of Soil-Vegetation-Atmosphere-Transfer (SVAT) models);[9][10][11] and the engineering community that deals with compressed air.[12]
Depending on the measuring instruments used, different sets of equations for the calculation of the density of air can be applied. Air is a mixture of gases and the calculations always simplify, to a greater or lesser extent, the properties of the mixture.
Temperature
Other things being equal, hotter air is less dense than cooler air and will thus rise through cooler air. This can be seen by using the ideal gas law as an approximation.
Dry air
The density of dry air can be calculated using the ideal gas law, expressed as a function of temperature and pressure:Шаблон:Citation needed <math display=block>\begin{align} \rho &= \frac{p}{R_\text{specific} T}\\ R_\text{specific} &= \frac{R}{M} = \frac{k_{\rm B}}{m}\\ \rho &= \frac{pM}{RT} = \frac{pm}{k_{\rm B}T}\\ \end{align}</math>
where:
- <math>\rho</math>, air density (kg/m3)[note 1]
- <math>p</math>, absolute pressure (Pa)[note 1]
- <math>T</math>, absolute temperature (K)[note 1]
- <math>R</math> is the gas constant, Шаблон:Val in J⋅K−1⋅mol−1 [note 1]
- <math>M</math> is the molar mass of dry air, approximately Шаблон:Val in kg⋅mol−1.[note 1]
- <math>k_{\rm B}</math> is the Boltzmann constant, Шаблон:Val in J⋅K−1[note 1]
- <math>m</math> is the molecular mass of dry air, approximately Шаблон:Val in kg.[note 1]
- <math>R_\text{specific}</math>, the specific gas constant for dry air, which using the values presented above would be approximately Шаблон:Val in J⋅kg−1⋅K−1[note 1].
Therefore:
- At IUPAC standard temperature and pressure (0Шаблон:Nbsp°C and 100Шаблон:NbspkPa), dry air has a density of approximately 1.2754Шаблон:Nbspkg/m3.
- At 20Шаблон:Nbsp°C and 101.325Шаблон:NbspkPa, dry air has a density of 1.2041 kg/m3.
- At 70Шаблон:Nbsp°F and 14.696Шаблон:Nbsppsi, dry air has a density of 0.074887Шаблон:Nbsplb/ft3.
The following table illustrates the air density–temperature relationship at 1 atm or 101.325 kPa: Шаблон:Temperature effect
Humid air
The addition of water vapor to air (making the air humid) reduces the density of the air, which may at first appear counter-intuitive. This occurs because the molar mass of water vapor (18Шаблон:Nbspg/mol) is less than the molar mass of dry air[note 2] (around 29Шаблон:Nbspg/mol). For any ideal gas, at a given temperature and pressure, the number of molecules is constant for a particular volume (see Avogadro's Law). So when water molecules (water vapor) are added to a given volume of air, the dry air molecules must decrease by the same number, to keep the pressure or temperature from increasing. Hence the mass per unit volume of the gas (its density) decreases.
The density of humid air may be calculated by treating it as a mixture of ideal gases. In this case, the partial pressure of water vapor is known as the vapor pressure. Using this method, error in the density calculation is less than 0.2% in the range of −10 °C to 50 °C. The density of humid air is found by:[13] <math display="block"> \rho_\text{humid air} = \frac{p_\text{d}}{R_\text{d} T} + \frac{p_\text{v}}{R_\text{v} T} = \frac{p_\text{d}M_\text{d} + p_\text{v}M_\text{v}}{R T} </math>
where:
- <math>\rho_\text{humid air}</math>, density of the humid air (kg/m3)
- <math>p_\text{d}</math>, partial pressure of dry air (Pa)
- <math>R_\text{d}</math>, specific gas constant for dry air, 287.058Шаблон:NbspJ/(kg·K)
- <math>T</math>, temperature (K)
- <math>p_\text{v}</math>, pressure of water vapor (Pa)
- <math>R_\text{v}</math>, specific gas constant for water vapor, 461.495Шаблон:NbspJ/(kg·K)
- <math>M_\text{d}</math>, molar mass of dry air, 0.0289652Шаблон:Nbspkg/mol
- <math>M_\text{v}</math>, molar mass of water vapor, 0.018016Шаблон:Nbspkg/mol
- <math>R</math>, universal gas constant, 8.31446Шаблон:NbspJ/(K·mol)
The vapor pressure of water may be calculated from the saturation vapor pressure and relative humidity. It is found by: <math display="block">p_\text{v} = \phi p_\text{sat}</math>
where:
- <math>p_\text{v}</math>, vapor pressure of water
- <math>\phi</math>, relative humidity (0.0–1.0)
- <math>p_\text{sat}</math>, saturation vapor pressure
The saturation vapor pressure of water at any given temperature is the vapor pressure when relative humidity is 100%. One formula is Tetens' equation from[14] used to find the saturation vapor pressure is: <math display="block">p_\text{sat} = 6.1078 \times 10^{\frac{7.5 T}{T + 237.3}} </math> where:
- <math>p_\text{sat}</math>, saturation vapor pressure (hPa)
- <math>T</math>, temperature (°C)
See vapor pressure of water for other equations.
The partial pressure of dry air <math>p_\text{d}</math> is found considering partial pressure, resulting in: <math display="block">p_\text{d} = p - p_\text{v}</math> where <math>p</math> simply denotes the observed absolute pressure.
Variation with altitude
Troposphere
To calculate the density of air as a function of altitude, one requires additional parameters. For the troposphere, the lowest part (~10 km) of the atmosphere, they are listed below, along with their values according to the International Standard Atmosphere, using for calculation the universal gas constant instead of the air specific constant:
- <math>p_0</math>, sea level standard atmospheric pressure, 101325Шаблон:NbspPa
- <math>T_0</math>, sea level standard temperature, 288.15Шаблон:NbspK
- <math>g</math>, earth-surface gravitational acceleration, 9.80665Шаблон:Nbspm/s2
- <math>L</math>, temperature lapse rate, 0.0065Шаблон:NbspK/m
- <math>R</math>, ideal (universal) gas constant, 8.31446Шаблон:NbspJ/(mol·K)
- <math>M</math>, molar mass of dry air, 0.0289652Шаблон:Nbspkg/mol
Temperature at altitude <math>h</math> meters above sea level is approximated by the following formula (only valid inside the troposphere, no more than ~18Шаблон:Nbspkm above Earth's surface (and lower away from Equator)): <math display="block">T = T_0 - L h</math>
The pressure at altitude <math>h</math> is given by: <math display="block">p = p_0 \left(1 - \frac{L h}{T_0}\right)^\frac{g M}{R L}</math>
Density can then be calculated according to a molar form of the ideal gas law: <math display="block">
\rho = \frac{p M}{R T} = \frac{p M}{R T_0 \left(1 - \frac{Lh}{T_0}\right)} = \frac{p_0 M}{R T_0} \left(1 - \frac{L h}{T_0} \right)^{\frac{g M}{R L} - 1}
</math>
where:
- <math>M</math>, molar mass
- <math>R</math>, ideal gas constant
- <math>T</math>, absolute temperature
- <math>p</math>, absolute pressure
Note that the density close to the ground is <math display="inline">\rho_0 = \frac{p_0 M}{R T_0}</math>
It can be easily verified that the hydrostatic equation holds: <math display="block">\frac{dp}{dh} = -g\rho .</math>
Exponential approximation
As the temperature varies with height inside the troposphere by less than 25%, <math display="inline">\frac{Lh}{T_0} < 0.25</math> and one may approximate: <math display="block">
\rho = \rho_0 e^{\left(\frac{g M}{R L} - 1\right) \ln \left(1 - \frac{L h}{T_0}\right)} \approx \rho_0 e^{-\left(\frac{g M}{R L} - 1\right)\frac{L h}{T_0}} = \rho_0 e^{-\left(\frac{g M h}{R T_0} - \frac{L h}{T_0}\right)}
</math>
Thus: <math display="block">\rho \approx \rho_0 e^{-h/H_n}</math>
Which is identical to the isothermal solution, except that Hn, the height scale of the exponential fall for density (as well as for number density n), is not equal to RT0/gM as one would expect for an isothermal atmosphere, but rather: <math display="block"> \frac{1}{H_n} = \frac{g M}{R T_0} - \frac{L}{T_0} </math>
Which gives Hn = 10.4Шаблон:Nbspkm.
Note that for different gasses, the value of Hn differs, according to the molar mass M: It is 10.9 for nitrogen, 9.2 for oxygen and 6.3 for carbon dioxide. The theoretical value for water vapor is 19.6, but due to vapor condensation the water vapor density dependence is highly variable and is not well approximated by this formula.
The pressure can be approximated by another exponent: <math display="block">
p = p_0 e^{\frac{g M}{R L} \ln \left(1 - \frac{L h}{T_0}\right)} \approx p_0 e^{-\frac{g M}{R L}\frac{L h}{T_0}} = p_0 e^{-\frac{g M h}{R T_0}}
</math>
Which is identical to the isothermal solution, with the same height scale Шаблон:Nowrap. Note that the hydrostatic equation no longer holds for the exponential approximation (unless L is neglected).
Hp is 8.4Шаблон:Nbspkm, but for different gasses (measuring their partial pressure), it is again different and depends upon molar mass, giving 8.7 for nitrogen, 7.6 for oxygen and 5.6 for carbon dioxide.
Total content
Further note that since g, Earth's gravitational acceleration, is approximately constant with altitude in the atmosphere, the pressure at height h is proportional to the integral of the density in the column above h, and therefore to the mass in the atmosphere above height h. Therefore the mass fraction of the troposphere out of all the atmosphere is given using the approximated formula for p: <math display="block">1 - \frac{p(h = 11\text{ km})}{p_0} = 1 - \left(\frac{T(11\text{ km})}{T_0} \right)^\frac{g M}{R L} \approx 76\%</math>
For nitrogen, it is 75%, while for oxygen this is 79%, and for carbon dioxide, 88%.
Tropopause
Higher than the troposphere, at the tropopause, the temperature is approximately constant with altitude (up to ~20Шаблон:Nbspkm) and is 220Шаблон:NbspK. This means that at this layer Шаблон:Nowrap and Шаблон:Nowrap, so that the exponential drop is faster, with Шаблон:Nowrap for air (6.5 for nitrogen, 5.7 for oxygen and 4.2 for carbon dioxide). Both the pressure and density obey this law, so, denoting the height of the border between the troposphere and the tropopause as U:
<math display="block">\begin{align}
p &= p(U) e^{-\frac{h - U}{H_\text{TP}}} = p_0 \left(1 - \frac{L U}{T_0}\right)^\frac{g M}{R L} e^{-\frac{h - U}{H_\text{TP}}} \\ \rho &= \rho(U) e^{-\frac{h - U}{H_\text{TP}}} = \rho_0 \left(1 - \frac{L U}{T_0}\right)^{\frac{g M}{R L} - 1} e^{-\frac{h - U}{H_\text{TP}}}
\end{align}</math>
Composition
Шаблон:Table composition of dry atmosphere
See also
- Air
- Atmospheric drag
- Lighter than air
- Density
- Atmosphere of Earth
- International Standard Atmosphere
- U.S. Standard Atmosphere
- NRLMSISE-00
Notes
References
External links
- Conversions of density units ρ by Sengpielaudio
- Air density and density altitude calculations and by Richard Shelquist
- Air density calculations by Sengpielaudio (section under Speed of sound in humid air)
- Air density calculator by Engineering design encyclopedia Шаблон:Webarchive
- Atmospheric pressure calculator by wolfdynamics
- Air iTools - Air density calculator for mobile by JSyA
- Revised formula for the density of moist air (CIPM-2007) by NIST
- ↑ Olson, Wayne M. (2000) AFFTC-TIH-99-01, Aircraft Performance Flight
- ↑ ICAO, Manual of the ICAO Standard Atmosphere (extended to 80 kilometres (262 500 feet)), Doc 7488-CD, Third Edition, 1993, Шаблон:ISBN.
- ↑ Grigorie, T.L., Dinca, L., Corcau J-I. and Grigorie, O. (2010) Aircrafts'Шаблон:Sic Altitude Measurement Using Pressure Information:Barometric Altitude and Density Altitude
- ↑ A., Picard, R.S., Davis, M., Gläser and K., Fujii (CIPM-2007) Revised formula for the density of moist air
- ↑ S. Herrmann, H.-J. Kretzschmar, and D.P. Gatley (2009), ASHRAE RP-1485 Final Report
- ↑ F.R. Martins, R.A. Guarnieri e E.B. Pereira, (2007) O aproveitamento da energia eólica (The wind energy resource).
- ↑ Andrade, R.G., Sediyama, G.C., Batistella, M., Victoria, D.C., da Paz, A.R., Lima, E.P., Nogueira, S.F. (2009) Mapeamento de parâmetros biofísicos e da evapotranspiração no Pantanal usando técnicas de sensoriamento remoto
- ↑ Marshall, John and Plumb, R. Alan (2008), Atmosphere, ocean, and climate dynamics: an introductory text Шаблон:ISBN.
- ↑ Pollacco, J. A., and B. P. Mohanty (2012), Uncertainties of Water Fluxes in Soil-Vegetation-Atmosphere Transfer Models: Inverting Surface Soil Moisture and Evapotranspiration Retrieved from Remote Sensing, Vadose Zone Journal, 11(3), Шаблон:Doi.
- ↑ Shin, Y., B. P. Mohanty, and A.V.M. Ines (2013), Estimating Effective Soil Hydraulic Properties Using Spatially Distributed Soil Moisture and Evapotranspiration, Vadose Zone Journal, 12(3), Шаблон:Doi.
- ↑ Saito, H., J. Simunek, and B. P. Mohanty (2006), Numerical Analysis of Coupled Water, Vapor, and Heat Transport in the Vadose Zone, Vadose Zone J. 5: 784-800.
- ↑ Perry, R.H. and Chilton, C.H., eds., Chemical Engineers' Handbook, 5th ed., McGraw-Hill, 1973.
- ↑ Shelquist, R (2009) Equations - Air Density and Density Altitude
- ↑ Shelquist, R (2009) Algorithms - Schlatter and Baker
Ошибка цитирования Для существующих тегов <ref>
группы «note» не найдено соответствующего тега <references group="note"/>
- Английская Википедия
- Страницы с неработающими файловыми ссылками
- Atmospheric thermodynamics
- Mass density
- Meteorological quantities
- Страницы, где используется шаблон "Навигационная таблица/Телепорт"
- Страницы с телепортом
- Википедия
- Статья из Википедии
- Статья из Английской Википедии
- Страницы с ошибками в примечаниях