Английская Википедия:Distance-regular graph

Материал из Онлайн справочника
Версия от 20:34, 27 февраля 2024; EducationBot (обсуждение | вклад) (Новая страница: «{{Английская Википедия/Панель перехода}} {{short description|Graph property}} {{refimprove|date=June 2009}} {{Graph families defined by their automorphisms}} In the mathematical field of graph theory, a '''distance-regular graph''' is a regular graph such that for any two vertices {{mvar|v}} and {{mvar|w}}, the number of vertices at distance {{mvar|j}} from {{...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

Шаблон:Short description Шаблон:Refimprove Шаблон:Graph families defined by their automorphisms

In the mathematical field of graph theory, a distance-regular graph is a regular graph such that for any two vertices Шаблон:Mvar and Шаблон:Mvar, the number of vertices at distance Шаблон:Mvar from Шаблон:Mvar and at distance Шаблон:Mvar from Шаблон:Mvar depends only upon Шаблон:Mvar, Шаблон:Mvar, and the distance between Шаблон:Mvar and Шаблон:Mvar.

Some authors exclude the complete graphs and disconnected graphs from this definition.

Every distance-transitive graph is distance-regular. Indeed, distance-regular graphs were introduced as a combinatorial generalization of distance-transitive graphs, having the numerical regularity properties of the latter without necessarily having a large automorphism group.

Intersection arrays

The intersection array of a distance-regular graph is the array <math>( b_0, b_1, \ldots, b_{d-1}; c_1, \ldots, c_d ) </math> in which <math>d</math> is the diameter of the graph and for each <math>1 \leq j \leq d </math>, <math>b_j </math> gives the number of neighbours of <math>u </math> at distance <math>j+1 </math> from <math>v </math> and <math>c_j </math> gives the number of neighbours of <math>u </math> at distance <math>j - 1 </math> from <math>v </math> for any pair of vertices <math>u </math> and <math>v </math> at distance <math>j </math>. There is also the number <math>a_j</math> that gives the number of neighbours of <math>u </math> at distance <math>j </math> from <math>v </math>. The numbers <math>a_j, b_j, c_j</math> are called the intersection numbers of the graph. They satisfy the equation <math>a_j + b_j + c_j = k,</math> where <math>k = b_0</math> is the valency, i.e., the number of neighbours, of any vertex.

It turns out that a graph <math>G </math> of diameter <math>d </math> is distance regular if and only if it has an intersection array in the preceding sense.

Cospectral and disconnected distance-regular graphs

A pair of connected distance-regular graphs are cospectral if their adjacency matrices have the same spectrum. This is equivalent to their having the same intersection array.

A distance-regular graph is disconnected if and only if it is a disjoint union of cospectral distance-regular graphs.

Properties

Suppose <math>G </math> is a connected distance-regular graph of valency <math>k</math> with intersection array <math>( b_0, b_1, \ldots, b_{d-1}; c_1, \ldots, c_d ) </math>. For each <math>0 \leq j \leq d, </math> let <math>k_j</math> denote the number of vertices at distance <math>k</math> from any given vertex and let <math>G_{j} </math> denote the <math>k_{j} </math>-regular graph with adjacency matrix <math>A_j </math> formed by relating pairs of vertices on <math>G </math> at distance <math>j </math>.

Graph-theoretic properties

  • <math>\frac{k_{j+1}}{k_{j}} = \frac{b_{j}}{c_{j+1}} </math> for all <math>0 \leq j < d </math>.
  • <math>b_0 > b_1 \geq \cdots \geq b_{d-1} > 0 </math> and <math>1 = c_1 \leq \cdots \leq c_d \leq b_0 </math>.

Spectral properties

  • <math>G </math> has <math>d + 1 </math> distinct eigenvalues.
  • The only simple eigenvalue of <math>G </math> is <math>k,</math> or both <math>k</math> and <math>-k</math> if <math>G</math> is bipartite.
  • <math>k \leq \frac{1}{2} (m - 1)(m + 2)</math> for any eigenvalue multiplicity <math>m > 1</math> of <math>G,</math> unless <math>G</math> is a complete multipartite graph.
  • <math>d \leq 3m - 4</math> for any eigenvalue multiplicity <math>m > 1</math> of <math>G,</math> unless <math>G</math> is a cycle graph or a complete multipartite graph.

If <math>G </math> is strongly regular, then <math>n \leq 4m - 1</math> and <math>k \leq 2m - 1</math>.

Examples

Файл:Klein-map.png
The degree 7 Klein graph and associated map embedded in an orientable surface of genus 3. This graph is distance regular with intersection array {7,4,1;1,2,7} and automorphism group PGL(2,7).

Some first examples of distance-regular graphs include:

Classification of distance-regular graphs

There are only finitely many distinct connected distance-regular graphs of any given valency <math>k > 2</math>.[1]

Similarly, there are only finitely many distinct connected distance-regular graphs with any given eigenvalue multiplicity <math>m > 2</math>[2] (with the exception of the complete multipartite graphs).

Cubic distance-regular graphs

The cubic distance-regular graphs have been completely classified.

The 13 distinct cubic distance-regular graphs are K4 (or Tetrahedral graph), K3,3, the Petersen graph, the Cubical graph, the Heawood graph, the Pappus graph, the Coxeter graph, the Tutte–Coxeter graph, the Dodecahedral graph, the Desargues graph, Tutte 12-cage, the Biggs–Smith graph, and the Foster graph.

References

Шаблон:Reflist

Further reading