Английская Википедия:Divisorial scheme

Материал из Онлайн справочника
Версия от 00:08, 28 февраля 2024; EducationBot (обсуждение | вклад) (Новая страница: «{{Английская Википедия/Панель перехода}} {{confuse|Divisorial sheaf}} In algebraic geometry, a '''divisorial scheme''' is a scheme admitting an '''ample family''' of line bundles, as opposed to an ample line bundle. In particular, a quasi-projective variety is a divisorial scheme and the notion is a generalization of "quasi-projective". It was introduced in {{harv|Borelli|1963}} (in the case of a variety) as well as i...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

Шаблон:Confuse In algebraic geometry, a divisorial scheme is a scheme admitting an ample family of line bundles, as opposed to an ample line bundle. In particular, a quasi-projective variety is a divisorial scheme and the notion is a generalization of "quasi-projective". It was introduced in Шаблон:Harv (in the case of a variety) as well as in Шаблон:Harv (in the case of a scheme). The term "divisorial" refers to the fact that "the topology of these varieties is determined by their positive divisors."[1] The class of divisorial schemes is quite large: it includes affine schemes, separated regular (noetherian) schemes and subschemes of a divisorial scheme (such as projective varieties).

Definition

Here is the definition in SGA 6, which is a more general version of the definition of Borelli. Given a quasi-compact quasi-separated scheme X, a family of invertible sheaves <math>L_i, i \in I</math> on it is said to be an ample family if the open subsets <math>U_f = \{ f \ne 0 \}, f \in \Gamma(X, L_i^{\otimes n}), i \in I, n \ge 1</math> form a base of the (Zariski) topology on X; in other words, there is an open affine cover of X consisting of open sets of such form.[2] A scheme is then said to be divisorial if there exists such an ample family of invertible sheaves.

Properties and counterexample

Since a subscheme of a divisorial scheme is divisorial, "divisorial" is a necessary condition for a scheme to be embedded into a smooth variety (or more generally a separated Noetherian regular scheme). To an extent, it is also a sufficient condition.[3]

A divisorial scheme has the resolution property; i.e., a coherent sheaf is a quotient of a vector bundle.[4] In particular, a scheme that does not have the resolution property is an example of a non-divisorial scheme.

See also

References

Шаблон:Reflist

Шаблон:Algebraic-geometry-stub