Английская Википедия:Domain wall fermion

Материал из Онлайн справочника
Версия от 08:00, 28 февраля 2024; EducationBot (обсуждение | вклад) (Новая страница: «{{Английская Википедия/Панель перехода}} {{Short description|Lattice fermion discretisation}} In lattice field theory, '''domain wall (DW) fermions''' are a fermion discretization avoiding the fermion doubling problem.<ref name="domain_walls_1992">{{cite journal |title=A method for simulating chiral fermions on the lattice |volume=288 |issn=0370-2693 |url=http://dx.doi.org/10.1016/0370-2693(92)91112-M |doi=1...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

Шаблон:Short description

In lattice field theory, domain wall (DW) fermions are a fermion discretization avoiding the fermion doubling problem.[1] They are a realisation of Ginsparg–Wilson fermions in the infinite separation limit <math>L_s\rightarrow\infty</math> where they become equivalent to overlap fermions.[2] DW fermions have undergone numerous improvements since Kaplan's original formulation[1] such as the reinterpretation by Shamir and the generalisation to Möbius DW fermions by Brower, Neff and Orginos.[3][4]

The original <math>d</math>-dimensional Euclidean spacetime is lifted into <math>d+1</math> dimensions. The additional dimension of length <math>L_s</math> has open boundary conditions and the so-called domain walls form its boundaries. The physics is now found to ″live″ on the domain walls and the doublers are located on opposite walls, that is at <math>L_s\rightarrow\infty</math> they completely decouple from the system.

Kaplan's (and equivalently Shamir's) DW Dirac operator is defined by two addends

<math>

D_\text{DW}(x,s;y,r) = D(x;y)\delta_{sr} + \delta_{xy}D_{d+1}(s;r)\, </math> with

<math>

D_{d+1}(s;r) = \delta_{sr} - (1-\delta_{s,L_s-1})P_-\delta_{s+1,r} - (1-\delta_{s0})P_+\delta_{s-1,r} + m\left(P_-\delta_{s,L_s-1}\delta_{0r} + P_+\delta_{s0}\delta_{L_s-1,r}\right)\, </math> where <math>P_\pm=(\mathbf1\pm\gamma_5)/2</math> is the chiral projection operator and <math>D</math> is the canonical Dirac operator in <math>d</math> dimensions. <math>x</math> and <math>y</math> are (multi-)indices in the physical space whereas <math>s</math> and <math>r</math> denote the position in the additional dimension.[5]

DW fermions do not contradict the Nielsen–Ninomiya theorem because they explicitly violate chiral symmetry (asymptotically obeying the Ginsparg–Wilson equation).

References

Шаблон:Reflist