Английская Википедия:Eichler–Shimura congruence relation

Материал из Онлайн справочника
Версия от 12:06, 2 марта 2024; EducationBot (обсуждение | вклад) (Новая страница: «{{Английская Википедия/Панель перехода}} {{short description|Expresses the local L-function of a modular curve at a prime in terms of Hecke operators}} {{distinguish|Eichler–Shimura isomorphism}} In number theory, the '''Eichler–Shimura congruence relation''' expresses the local ''L''-function of a modular curve at a prime ''p'' in terms of the eigenvalues of Hecke op...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

Шаблон:Short description Шаблон:Distinguish In number theory, the Eichler–Shimura congruence relation expresses the local L-function of a modular curve at a prime p in terms of the eigenvalues of Hecke operators. It was introduced by Шаблон:Harvs and generalized by Шаблон:Harvs. Roughly speaking, it says that the correspondence on the modular curve inducing the Hecke operator Tp is congruent mod p to the sum of the Frobenius map Frob and its transpose Ver. In other words,

Tp = Frob + Ver

as endomorphisms of the Jacobian J0(N)Fp of the modular curve X0N over the finite field Fp.

The Eichler–Shimura congruence relation and its generalizations to Shimura varieties play a pivotal role in the Langlands program, by identifying a part of the Hasse–Weil zeta function of a modular curve or a more general modular variety, with the product of Mellin transforms of weight 2 modular forms or a product of analogous automorphic L-functions.

References

Шаблон:No footnotes