Английская Википедия:Elliptic complex

Материал из Онлайн справочника
Версия от 06:04, 3 марта 2024; EducationBot (обсуждение | вклад) (Новая страница: «{{Английская Википедия/Панель перехода}} In mathematics, in particular in partial differential equations and differential geometry, an '''elliptic complex''' generalizes the notion of an elliptic operator to sequences. Elliptic complexes isolate those features common to the de Rham complex and the Dolbeault complex which are essential for performing Hodge theo...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

In mathematics, in particular in partial differential equations and differential geometry, an elliptic complex generalizes the notion of an elliptic operator to sequences. Elliptic complexes isolate those features common to the de Rham complex and the Dolbeault complex which are essential for performing Hodge theory. They also arise in connection with the Atiyah-Singer index theorem and Atiyah-Bott fixed point theorem.

Definition

If E0, E1, ..., Ek are vector bundles on a smooth manifold M (usually taken to be compact), then a differential complex is a sequence

<math>\Gamma(E_0) \stackrel{P_1}{\longrightarrow} \Gamma(E_1) \stackrel{P_2}{\longrightarrow} \ldots \stackrel{P_k}{\longrightarrow} \Gamma(E_k)</math>

of differential operators between the sheaves of sections of the Ei such that Pi+1Pi=0. A differential complex with first order operators is elliptic if the sequence of symbols

<math>0 \rightarrow \pi^*E_0 \stackrel{\sigma(P_1)}{\longrightarrow} \pi^*E_1 \stackrel{\sigma(P_2)}{\longrightarrow} \ldots \stackrel{\sigma(P_k)}{\longrightarrow} \pi^*E_k \rightarrow 0</math>

is exact outside of the zero section. Here π is the projection of the cotangent bundle T*M to M, and π* is the pullback of a vector bundle.

See also

References

Шаблон:Cite journal


Шаблон:Differential-geometry-stub