Английская Википедия:Ellis–Numakura lemma

Материал из Онлайн справочника
Версия от 06:18, 3 марта 2024; EducationBot (обсуждение | вклад) (Новая страница: «{{Английская Википедия/Панель перехода}} {{Short description|A compact topological semigroup with a semicontinuous product has an idempotent element}} In mathematics, the '''Ellis–Numakura lemma''' states that if ''S'' is a non-empty semigroup with a topology such that ''S'' is compact and the product is semi-continuous, then ''S'' has an idempotent element ''p'', (that is, with ''pp'' =&n...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

Шаблон:Short description In mathematics, the Ellis–Numakura lemma states that if S is a non-empty semigroup with a topology such that S is compact and the product is semi-continuous, then S has an idempotent element p, (that is, with pp = p). The lemma is named after Robert Ellis and Katsui Numakura.

Applications

Applying this lemma to the Stone–Čech compactification βN of the natural numbers shows that there are idempotent elements in βN. The product on βN is not continuous, but is only semi-continuous (right or left, depending on the preferred construction, but never both).

Proof

  • By compactness and Zorn's Lemma, there is a minimal non-empty compact sub semigroup of S, so replacing S by this sub semi group we can assume S is minimal.
  • Choose p in S. The set Sp is a non-empty compact subsemigroup, so by minimality it is S and in particular contains p, so the set of elements q with qp = p is non-empty.
  • The set of all elements q with qp = p is a compact semigroup, and is nonempty by the previous step, so by minimality it is the whole of S and therefore contains p. So pp = p.

References

External links