Английская Википедия:Elongated cupola

Материал из Онлайн справочника
Версия от 07:13, 3 марта 2024; EducationBot (обсуждение | вклад) (Новая страница: «{{Английская Википедия/Панель перехода}} {| class=wikitable align="right" !bgcolor=#e7dcc3 colspan=2|Set of elongated cupolae |- |align=center colspan=2|320px<BR>Example pentagonal form |- |bgcolor=#e7dcc3|Faces||n triangles<BR>3n squares<BR> 1 n-gon<BR>1 2n-gon |- |bgcolor=#e7dcc3|Edges||9n |- |bgcolor=#e7dcc3|Vertices||5n |- |bgcolor=#e7dcc3|List of spher...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

Set of elongated cupolae
Файл:Elongated pentagonal cupola.png
Example pentagonal form
Faces n triangles
3n squares
1 n-gon
1 2n-gon
Edges 9n
Vertices 5n
Symmetry group Cnv, [n], (*nn)
Rotational group Cn, [n]+, (nn)
Dual polyhedron
Properties convex

In geometry, the elongated cupolae are an infinite set of polyhedra, constructed by adjoining an n-gonal cupola to an 2n-gonal prism.

There are three elongated cupolae that are Johnson solids made from regular triangles and square, and pentagons. Higher forms can be constructed with isosceles triangles. Adjoining a triangular prism to a cube also generates a polyhedron, but has adjacent parallel faces, so is not a Johnson solid. Higher forms can be constructed without regular faces.

Forms

name faces
Файл:Elongated digonal cupola.png elongated digonal cupola 2 triangles, 6+1 squares
Файл:Elongated triangular cupola.png elongated triangular cupola (J18) 3+1 triangles, 9 squares, 1 hexagon
Файл:Elongated square cupola.png elongated square cupola (J19) 4 triangles, 12+1 squares, 1 octagon
Файл:Elongated pentagonal cupola.png elongated pentagonal cupola (J20) 5 triangles, 15 squares, 1 pentagon, 1 decagon
elongated hexagonal cupola 6 triangles, 18 squares, 1 hexagon, 1 dodecagon

See also

References

  • Norman W. Johnson, "Convex Solids with Regular Faces", Canadian Journal of Mathematics, 18, 1966, pages 169–200. Contains the original enumeration of the 92 solids and the conjecture that there are no others.
  • Шаблон:Cite book The first proof that there are only 92 Johnson solids.

Шаблон:Polyhedron navigator


Шаблон:Polyhedron-stub