Английская Википедия:Entropy-vorticity wave

Материал из Онлайн справочника
Версия от 23:46, 3 марта 2024; EducationBot (обсуждение | вклад) (Новая страница: «{{Английская Википедия/Панель перехода}} {{Multiple issues| {{Technical|date=February 2024}} {{Primary sources|date=February 2024}} }} '''Entropy-vorticity waves''' (or sometimes '''entropy-vortex waves''') refer to small-amplitude waves carried by the gas within which entropy, vorticity, density but not pressure perturbations are propagated.<ref name="landau">Landau, L. D., & Lifshitz, E. M. (2013). Fluid Mec...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

Шаблон:Multiple issues Entropy-vorticity waves (or sometimes entropy-vortex waves) refer to small-amplitude waves carried by the gas within which entropy, vorticity, density but not pressure perturbations are propagated.[1] Entropy-vortivity waves are essentially isobaric, incompressible, rotational perturbations along with entropy perturbations.[2] This wave differs from the other well-known small-amplitude wave that is a sound wave, which propagates with respect to the gas within which density, pressure but not entropy perturbations are propagated. The classification of small disturbances into acoustic, entropy and vortex modes was introduced by Leslie S. G. Kovasznay.[3][4]

Entropy-vorticity waves are ubiquitous in supersonic problems, particularly those involving shock waves. Since these perturbations are carried by the gas, they are convected by the flow downstream of the shock wave, but they cannot be propagates in the upstream direction (behind the shock wave) unlike the acoustic wave, which can propagate upstream and can catch up the shock wave. As such, they are useful in understadning many high speed flows and are important in many applications such as in solid-propellant rockets and detonations.[5][6][7]

Mathematical description

Consider a gas flow with a uniform velocity field <math>\mathbf v</math> and having a pressure <math>p</math>, density <math>\rho</math>, entropy <math>s</math> and sound speed <math>c</math>. Now we add small perturbations to these variables, which are denoted with a symbol <math>\delta</math>. The perturbed variables being small quatities satisfy linearized form of the Euler equations, which is given byШаблон:R

<math>\begin{align}

\frac{\partial\delta p}{\partial t} + \mathbf v\cdot \nabla \delta p + \rho c^2 \nabla\cdot \delta\mathbf v &= 0,\\ \frac{\partial\delta\mathbf v}{\partial t} + (\mathbf v\cdot \nabla)\delta\mathbf v + \frac{1}{\rho}\nabla\delta p &=0,\\ \frac{\partial\delta s}{\partial t} + \mathbf v\cdot \nabla \delta s &=0, \end{align}</math>

where in the continuity equation, we have used the relation <math>\delta\rho = \delta p/c^2+(\partial \rho/\partial s)_p \delta s</math> (since <math>\rho=\rho(p,s)</math> and <math>c^2=(\partial p/\partial \rho)_s</math>) and the used the entropy equation to simplify it. Taking perturbations to be of the plane-wave form <math>e^{i\mathbf k\cdot \mathbf r-i\omega t}</math>, the linearised equations can be reduced to algebraic equations

<math>\begin{align}

(\mathbf v\cdot\mathbf k-\omega)\delta p + \rho c^2 \mathbf k\cdot\delta\mathbf v&=0,\\ (\mathbf v\cdot\mathbf k-\omega)\delta\mathbf v +\mathbf k\delta p/\rho &=0,\\ (\mathbf v\cdot\mathbf k-\omega)\delta s &=0. \end{align}</math>

The last equation shows that either <math>\delta s=0</math>, which corresponds to sound waves in which entropy does not change or <math>\mathbf v\cdot\mathbf k-\omega=0</math>. The later condition indicating that perturbations are carried by the gas corresponds to the entropy-vortex wave. In this case, we have

<math>\omega = \mathbf v\cdot\mathbf k, \quad \delta s\neq 0, \quad \delta p =0, \quad \delta \rho = \left(\frac{\partial \rho}{\partial s}\right)_p \delta s, \quad \mathbf k\cdot\delta\mathbf v=0, \quad \delta\boldsymbol\omega=i\mathbf k\times\delta \mathbf v\neq 0,</math>

where <math>\delta\boldsymbol\omega=\nabla\times\delta\mathbf v</math> is the vorticity perturbation. As we can see, the entropy perturbation <math>\delta s</math> and the vorticity perturbation <math>\delta\boldsymbol\omega</math> are independent meaning that one can have entropy waves without vorticity waves or vorticity waves with entropy waves or both entropy and vorticity waves.

In non-reacting mutlicomponent gas, we can also have compositional perturbations since in this case, <math>\rho=\rho(p,s,Y_i)</math>, where <math>Y_i</math> is the mass fraction of ith specices of total <math>N</math> chemical species. In the entropy-vorticity wave, we have then

<math>\delta\rho = \left(\frac{\partial \rho}{\partial s}\right)_{p,Y_i} \delta s + \sum_{i=1}^N \left(\frac{\partial \rho}{\partial Y_i}\right)_{s,p,Y_j(j\neq i)} \delta Y_i.</math>

References

Шаблон:Reflist

  1. Landau, L. D., & Lifshitz, E. M. (2013). Fluid Mechanics: Landau and Lifshitz: Course of Theoretical Physics, Volume 6 (Vol. 6). Elsevier. Page 316, section 82.
  2. Clavin, P., & Searby, G. (2016). Combustion waves and fronts in flows: flames, shocks, detonations, ablation fronts and explosion of stars. Cambridge University Press. Page. 262.
  3. Kovasznay, L. S. (1953). Turbulence in supersonic flow. Journal of the Aeronautical Sciences, 20(10), 657-674.
  4. Chu, B. T., & Kovásznay, L. S. (1958). Non-linear interactions in a viscous heat-conducting compressible gas. Journal of Fluid Mechanics, 3(5), 494-514.
  5. Flandro, G. A. (1995). Effects of vorticity on rocket combustion stability. Journal of Propulsion and Power, 11(4), 607-625.
  6. Liñán Martínez, A., Kurdyumov, V., & Soler, J. (2004). The flow field in the slender combustion chambers of solid propellant rockets.
  7. Clavin, P., & Williams, F. A. (2012). Analytical studies of the dynamics of gaseous detonations. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 370(1960), 597-624.