Английская Википедия:Erdős cardinal

Материал из Онлайн справочника
Версия от 05:25, 4 марта 2024; EducationBot (обсуждение | вклад) (Новая страница: «{{Английская Википедия/Панель перехода}} In mathematics, an '''Erdős cardinal''', also called a '''partition cardinal''' is a certain kind of large cardinal number introduced by {{harvs|txt|authorlink=Paul Erdős|last=Erdős|first=Paul|first2=András |last2=Hajnal|author2-link=András Hajnal|year=1958}}. A cardinal κ is called α-Erdős if for every function {{math| ''f'' : ''κ''<sup>< ''ω''</sup> → {0, 1}...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

In mathematics, an Erdős cardinal, also called a partition cardinal is a certain kind of large cardinal number introduced by Шаблон:Harvs.

A cardinal κ is called α-Erdős if for every function Шаблон:Math there is a set of order type Шаблон:Mvar that is homogeneous for Шаблон:Math. In the notation of the partition calculus, κ is α-Erdős if

Шаблон:Math.

The existence of zero sharp implies that the constructible universe Шаблон:Mvar satisfies "for every countable ordinal Шаблон:Mvar, there is an Шаблон:Mvar-Erdős cardinal". In fact, for every indiscernible Шаблон:Mvar satisfies "for every ordinal Шаблон:Mvar, there is an Шаблон:Mvar-Erdős cardinal in Шаблон:Math" (the Levy collapse to make Шаблон:Mvar countable).

However, the existence of an Шаблон:Math-Erdős cardinal implies existence of zero sharp. If Шаблон:Math is the satisfaction relation for Шаблон:Mvar (using ordinal parameters), then the existence of zero sharp is equivalent to there being an Шаблон:Math-Erdős ordinal with respect to Шаблон:Math. Thus, the existence of zero sharp implies that the axiom of constructibility is false.

If κ is Шаблон:Mvar-Erdős, then it is Шаблон:Mvar-Erdős in every transitive model satisfying "Шаблон:Mvar is countable."

See also


References


Шаблон:Settheory-stub