Английская Википедия:Formate dehydrogenase

Материал из Онлайн справочника
Версия от 22:00, 8 марта 2024; EducationBot (обсуждение | вклад) (Новая страница: «{{Английская Википедия/Панель перехода}} {{other uses}} {{Pfam_box | Symbol = Form-deh_trans | Name = Formate dehydrogenase N, transmembrane | image = 1kqg.jpg | width = 270 | caption = Formate dehydrogenase-N hetero9mer, E.Coli | Pfam= PF09163 | InterPro= IPR015246 | SMART= | Prosite = | SCOP = 1kqf | TCDB = | OPM family= 3 | OPM protein= 1kqf | PDB= {{PDB3|1kqf}}B:246-289 {{PDB3|1kqg}}B:246-289 }} '''F...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

Шаблон:Other uses Шаблон:Pfam box

Formate dehydrogenases are a set of enzymes that catalyse the oxidation of formate to carbon dioxide, donating the electrons to a second substrate, such as NAD+ in formate:NAD+ oxidoreductase (Шаблон:EC number) or to a cytochrome in formate:ferricytochrome-b1 oxidoreductase (Шаблон:EC number).[1] This family of enzymes has attracted attention as inspiration or guidance on methods for the carbon dioxide fixation, relevant to global warming.[2]

Function

NAD-dependent formate dehydrogenases are important in methylotrophic yeast and bacteria, being vital in the catabolism of C1 compounds such as methanol.[3] The cytochrome-dependent enzymes are more important in anaerobic metabolism in prokaryotes.[4] For example, in E. coli, the formate:ferricytochrome-b1 oxidoreductase is an intrinsic membrane protein with two subunits and is involved in anaerobic nitrate respiration.[5][6]

NAD-dependent reaction

Formate + NAD+ Шаблон:Eqm CO2 + NADH + H+

Cytochrome-dependent reaction

Formate + 2 ferricytochrome b1 Шаблон:Eqm CO2 + 2 ferrocytochrome b1 + 2 H+

Molybdopterin, molybdenum and selenium dependence

The metal-dependent Fdh's feature Mo or W at their active sites. These active sites resemble the motif seen in DMSO reductase, with two molybdopterin cofactors bound to Mo/W in a bidentate fashion. The fifth and sixth ligands are sulfide and either cysteinate or selenocysteinate.[7]

The mechanism of action appears to involve 2e redox of the metal centers, induced by hydride transfer from formate and release of carbon dioxide:

Шаблон:Chem2
Шаблон:Chem2

In this scheme, Шаблон:Chem2 represents the four thiolate-like ligands provided by the two dithiolene cofactors, the molybdopterins. The dithiolene and cysteinyl/selenocysteinyl ligands are redox-innocent. In terms of the molecular details, the mechanism remains uncertain, despite numerous investigations. Most mechanisms assume that formate does not coordinate to Mo/W, in contrast to typical Mo/W oxo-transferases (e.g., DMSO reductase). A popular mechanistic proposal entails transfer of H- from formate to the Mo/WVI=S group.[8]

Файл:Formate Dehydrogenase 1kqf overall protein 1 (KC).png
Formate Dehydrogenase (PDB 1KQF, 1.6 A resolution, from E. coli); overall view of the electron transport chain showing the [Fe4S4] clusters in the periplasmic alpha and beta subunits, and the cytoplasmic gamma subunit showing the Fe(heme b)P and the Fe-(heme b)C menoquinone binding site where an HQNO ligand is bound close the Fe(heme b)C. Atom colours: Fe = orange, S = yellow, C = grey, O = red, N = blue.

Transmembrane domain

Formate dehydrogenase consists of two transmembrane domains; three α-helices of the β-subunit and four transmembrane helices from the gamma-subunit.

The β-subunit of formate dehydrogenase is present in the periplasm with a single transmembrane α-helix spanning the membrane by anchoring the β-subunit to the inner-membrane surface. The β-subunit has two subdomains, where each subdomain has two [4Fe-4S] ferredoxin clusters. The judicious alignment of the [4Fe-4S] clusters in a chain through the subunit have low separation distances, which allow rapid electron flow through [4Fe-4S]-1, [4Fe-4S]-4, [4Fe-4S]-2, and [4Fe-4S]-3 to the periplasmic heme b in the γ-subunit. The electron flow is then directed across the membrane to a cytoplasmic heme b in the γ-subunit .

The γ-subunit of formate dehydrogenase is a membrane-bound cytochrome b consisting of four transmembrane helices and two heme b groups which produce a four-helix bundle which aids in heme binding. The heme b cofactors bound to the gamma subunit allow for the hopping of electrons through the subunit. The transmembrane helices maintain both heme b groups, while only three provide the heme ligands thereby anchoring Fe-heme. The periplasmic heme b group accepts electrons from [4Fe-4S]-3 clusters of the  β-subunit’s periplasmic domain. The cytoplasmic heme b group accepts electrons from the periplasmic heme b group, where electron flow is then directed towards the menaquinone (vitamin K) reduction site, present in the transmembrane domain of the gamma subunit. The menaquinone reduction site in the γ-subunit, accepts electrons through the binding of a histidine ligand of the cytoplasmic heme b.[9]

Файл:Colored electron tunneling F-DHN.jpg
Menaquinone binding site alongside proposed water proton pathway

See also

Шаблон:Portal

Additional reading

References

Шаблон:Reflist

External links

Шаблон:Electron transport chain Шаблон:Cellular respiration Шаблон:Aldehyde/Oxo oxidoreductases Шаблон:Enzymes