Английская Википедия:G-fibration

Материал из Онлайн справочника
Версия от 20:04, 10 марта 2024; EducationBot (обсуждение | вклад) (Новая страница: «{{Английская Википедия/Панель перехода}} In algebraic topology, a '''''G''-fibration''' or '''principal fibration''' is a generalization of a principal ''G''-bundle, just as a fibration is a generalization of a fiber bundle. By definition,<ref>{{cite book|last=James|first=I.M.|title=Handbook of Algebraic Topology|url=https://books.google.com/books?id=xoM5DxQZihQC&pg=PA833|year=1995|publisher...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

In algebraic topology, a G-fibration or principal fibration is a generalization of a principal G-bundle, just as a fibration is a generalization of a fiber bundle. By definition,[1] given a topological monoid G, a G-fibration is a fibration p: PB together with a continuous right monoid action P × GP such that

  • (1) <math>p(x g) = p(x)</math> for all x in P and g in G.
  • (2) For each x in P, the map <math>G \to p^{-1}(p(x)), g \mapsto xg</math> is a weak equivalence.

A principal G-bundle is a prototypical example of a G-fibration. Another example is Moore's path space fibration: namely, let <math>P'X</math> be the space of paths of various length in a based space X. Then the fibration <math>p: P'X \to X</math> that sends each path to its end-point is a G-fibration with G the space of loops of various lengths in X.

References

Шаблон:Reflist


Шаблон:Topology-stub