Английская Википедия:Geometric process

Материал из Онлайн справочника
Версия от 05:51, 12 марта 2024; EducationBot (обсуждение | вклад) (Новая страница: «{{Английская Википедия/Панель перехода}} {{Technical|date=August 2020}} In probability, statistics and related fields, the '''geometric process''' is a counting process, introduced by Lam in 1988.<ref>Lam, Y. (1988). [https://dx.doi.org/10.1007/BF02007241 Geometric processes and replacement problem]. ''Acta Mathematicae Applicatae Sinica''. 4, 366–377</ref> It is defined as The geometric process. Given a sequence o...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

Шаблон:Technical In probability, statistics and related fields, the geometric process is a counting process, introduced by Lam in 1988.[1] It is defined as

The geometric process. Given a sequence of non-negative random variables :<math> \{X_k,k=1,2, \dots\} </math>, if they are independent and the cdf of <math> X_k </math> is given by <math>F(a^{k-1}x)</math> for <math> k=1,2, \dots </math>, where <math>a </math> is a positive constant, then <math>\{X_k,k=1,2,\ldots\}</math> is called a geometric process (GP).

The GP has been widely applied in reliability engineering[2]

Below are some of its extensions.

  • The α- series process.[3] Given a sequence of non-negative random variables:<math> \{X_k,k=1,2, \dots\} </math>, if they are independent and the cdf of <math> \frac{X_k}{k^a} </math> is given by <math>F(x)</math> for <math> k=1,2, \dots </math>, where <math>a </math> is a positive constant, then <math>\{X_k,k=1,2,\ldots\}</math> is called an α- series process.
  • The threshold geometric process.[4] A stochastic process <math>\{Z_n, n = 1,2, \ldots\}</math> is said to be a threshold geometric process (threshold GP), if there exists real numbers <math>a_i > 0, i = 1,2, \ldots , k</math> and integers <math>\{1 = M_1 < M_2 < \cdots < M_k < M_{k+1} = \infty\}</math> such that for each <math>i = 1, \ldots , k</math>, <math>\{a_i^{n-M_i}Z_n, M_i \le n < M_{i+1}\}</math> forms a renewal process.
  • The doubly geometric process.[5] Given a sequence of non-negative random variables :<math> \{X_k,k=1,2, \dots\} </math>, if they are independent and the cdf of <math> X_k </math> is given by <math>F(a^{k-1}x^{h(k)})</math> for <math> k=1,2, \dots </math>, where <math>a </math> is a positive constant and <math>h(k)</math> is a function of <math>k </math> and the parameters in <math>h(k)</math> are estimable, and <math>h(k)>0</math> for natural number <math>k</math>, then <math>\{X_k,k=1,2,\ldots\}</math> is called a doubly geometric process (DGP).
  • The semi-geometric process.[6] Given a sequence of non-negative random variables <math> \{X_k, k=1,2,\dots\} </math>, if <math> P\{X_k < x|X_{k-1}=x_{k-1}, \dots , X_1=x_1\} = P\{X_k < x|X_{k-1}=x_{k-1}\} </math> and the marginal distribution of <math> X_k </math> is given by <math> P\{X_k < x\}=F_k (x)(\equiv F(a^{k-1} x)) </math>, where <math> a </math> is a positive constant, then <math>\{X_k, k=1,2,\dots\}</math> is called a semi-geometric process
  • The double ratio geometric process.[7] Given a sequence of non-negative random variables <math>\{Z_k^D,k=1,2, \dots\}</math>, if they are independent and the cdf of <math> Z_k^D </math> is given by <math>F_k^D(t)=1-\exp\{-\int_0^{t} b_k h(a_k u) du\}</math> for <math>k=1,2, \dots</math>, where <math> a_k</math> and <math> b_k </math> are positive parameters (or ratios) and <math> a_1=b_1=1</math>. We call the stochastic process the double-ratio geometric process (DRGP).

References

Шаблон:Reflist

Шаблон:Stochastic processes

  1. Lam, Y. (1988). Geometric processes and replacement problem. Acta Mathematicae Applicatae Sinica. 4, 366–377
  2. Lam, Y. (2007). Geometric process and its applications. World Scientific, Singapore MATH. Шаблон:ISBN.
  3. Braun, W. J., Li, W., & Zhao, Y. Q. (2005). Properties of the geometric and related processes. Naval Research Logistics (NRL), 52(7), 607–616.
  4. Chan, J.S., Yu, P.L., Lam, Y. & Ho, A.P. (2006). Modelling SARS data using threshold geometric process. Statistics in Medicine. 25 (11): 1826–1839.
  5. Wu, S. (2018). Doubly geometric processes and applications. Journal of the Operational Research Society, 69(1) 66-77. Шаблон:Doi.
  6. Wu, S., Wang, G. (2017). The semi-geometric process and some properties. IMA J Management Mathematics, 1–13.
  7. Wu, S. (2022) The double ratio geometric process for the analysis of recurrent events. Naval Research Logistics, 69(3) 484-495.