Английская Википедия:Gewirtz graph

Материал из Онлайн справочника
Версия от 02:37, 14 марта 2024; EducationBot (обсуждение | вклад) (Новая страница: «{{Английская Википедия/Панель перехода}} {{Infobox graph | name = Gewirtz graph | image = 300px | image_caption = Some embeddings with 7-fold symmetry. No 8-fold or 14-fold symmetry are possible. | vertices = 56 | edges = 280 | automorphisms = {{formatnum:80640}} | radius = 2 | diameter = 2 | girth = 4 | chromatic_number = 4 | properties = Strongly regular graph|Strongly reg...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

Шаблон:Infobox graph

The Gewirtz graph is a strongly regular graph with 56 vertices and valency 10. It is named after the mathematician Allan Gewirtz, who described the graph in his dissertation.[1]

Construction

The Gewirtz graph can be constructed as follows. Consider the unique S(3, 6, 22) Steiner system, with 22 elements and 77 blocks. Choose a random element, and let the vertices be the 56 blocks not containing it. Two blocks are adjacent when they are disjoint.

With this construction, one can embed the Gewirtz graph in the Higman–Sims graph.

Properties

The characteristic polynomial of the Gewirtz graph is

<math>(x-10)(x-2)^{35}(x+4)^{20}. \, </math>

Therefore, it is an integral graph. The Gewirtz graph is also determined by its spectrum.

The independence number is 16.

Notes

Шаблон:Reflist

References

  1. Allan Gewirtz, Graphs with Maximal Even Girth, Ph.D. Dissertation in Mathematics, City University of New York, 1967.