Английская Википедия:Great deltoidal icositetrahedron

Материал из Онлайн справочника
Версия от 19:17, 16 марта 2024; EducationBot (обсуждение | вклад) (Новая страница: «{{Английская Википедия/Панель перехода}} {{Short description|Polyhedron with 24 faces}} {{Uniform polyhedra db|Uniform dual polyhedron stat table|ugrCO}} In geometry, the '''great deltoidal icositetrahedron''' (or '''great sagittal disdodecahedron''') is the dual of the nonconvex great rhombicuboctahedron. Its faces are darts. Part of each dart lies inside the solid, hence is invisible in solid models. One of its hal...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

Шаблон:Short description Шаблон:Uniform polyhedra db In geometry, the great deltoidal icositetrahedron (or great sagittal disdodecahedron) is the dual of the nonconvex great rhombicuboctahedron. Its faces are darts. Part of each dart lies inside the solid, hence is invisible in solid models.

One of its halves can be rotated by 45 degrees to form the pseudo great deltoidal icositetrahedron, analogous to the pseudo-deltoidal icositetrahedron.

Proportions

Faces have three angles of <math>\arccos(\frac{1}{2}+\frac{1}{4}\sqrt{2})\approx 31.399\,714\,809\,92^{\circ}</math> and one of <math>360^{\circ}-\arccos(-\frac{1}{4}+\frac{1}{8}\sqrt{2})\approx 265.800\,855\,570\,24^{\circ}</math>. Its dihedral angles equal <math>\arccos({\frac{-7+4\sqrt{2}}{17}})\approx 94.531\,580\,798\,20^{\circ}</math>. The ratio between the lengths of the long edges and the short ones equals <math>2+\frac{1}{2}\sqrt{2}\approx 2.707\,106\,781\,19</math>.

References

External links

Шаблон:Mathworld

Шаблон:Polyhedron-stub