Английская Википедия:Great ditrigonal dodecacronic hexecontahedron

Материал из Онлайн справочника
Версия от 19:17, 16 марта 2024; EducationBot (обсуждение | вклад) (Новая страница: «{{Английская Википедия/Панель перехода}} {{Short description|Polyhedron with 60 faces}} {{Uniform polyhedra db|Uniform dual polyhedron stat table|gdDID}} thumb|3D model of a great ditrigonal dodecacronic hexecontahedron In geometry, the '''great ditrigonal dodecacronic hexecontahedron''' (or '''great lanceal trisicosahedron''') is a nonconvex Isohedral figure|is...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

Шаблон:Short description Шаблон:Uniform polyhedra db

Файл:Great ditrigonal dodecacronic hexecontahedron.stl
3D model of a great ditrigonal dodecacronic hexecontahedron

In geometry, the great ditrigonal dodecacronic hexecontahedron (or great lanceal trisicosahedron) is a nonconvex isohedral polyhedron. It is the dual of the uniform great ditrigonal dodecicosidodecahedron. Its faces are kites. Part of each kite lies inside the solid, hence is invisible in solid models.

Proportions

Kite faces have two angles of <math>\arccos(\frac{5}{12}-\frac{1}{4}\sqrt{5})\approx 98.183\,872\,491\,81^{\circ}</math>, one of <math>\arccos(-\frac{5}{12}+\frac{1}{60}\sqrt{5})\approx 112.296\,452\,073\,54^{\circ}</math> and one of <math>\arccos(-\frac{1}{12}+\frac{19}{60}\sqrt{5})\approx 51.335\,802\,942\,83^{\circ}</math>. Its dihedral angles equal <math>\arccos({\frac{-44+3\sqrt{5}}{61}})\approx 127.686\,523\,427\,48^{\circ}</math>. The ratio between the lengths of the long edges and the short ones equals <math>\frac{31+5\sqrt{5}}{22}\approx 1.917\,288\,176\,70</math>.

References

External links

Шаблон:Polyhedron-stub