Английская Википедия:Griess algebra

Материал из Онлайн справочника
Версия от 03:19, 17 марта 2024; EducationBot (обсуждение | вклад) (Новая страница: «{{Английская Википедия/Панель перехода}} In mathematics, the '''Griess algebra''' is a commutative non-associative algebra on a real vector space of dimension 196884 that has the Monster group ''M'' as its automorphism group. It is named after mathematician R. L. Griess, who constructed it in 1980 and subsequently used it in 1982 to...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

In mathematics, the Griess algebra is a commutative non-associative algebra on a real vector space of dimension 196884 that has the Monster group M as its automorphism group. It is named after mathematician R. L. Griess, who constructed it in 1980 and subsequently used it in 1982 to construct M. The Monster fixes (vectorwise) a 1-space in this algebra and acts absolutely irreducibly on the 196883-dimensional orthogonal complement of this 1-space. (The Monster preserves the standard inner product on the 196884-space.)

Griess's construction was later simplified by Jacques Tits and John H. Conway.

The Griess algebra is the same as the degree 2 piece of the monster vertex algebra, and the Griess product is one of the vertex algebra products.

References


Шаблон:Algebra-stub