Английская Википедия:Gudkov's conjecture

Материал из Онлайн справочника
Версия от 10:18, 17 марта 2024; EducationBot (обсуждение | вклад) (Новая страница: «{{Английская Википедия/Панель перехода}} In real algebraic geometry, '''Gudkov's conjecture''', also called '''Gudkov’s congruence''', (named after Dmitry Gudkov) was a conjecture, and is now a theorem, which states that an M-curve of even degree <math>2d</math> obeys the congruence : <math> p - n \equiv d^2\, (\!\bmod 8),</math...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

In real algebraic geometry, Gudkov's conjecture, also called Gudkov’s congruence, (named after Dmitry Gudkov) was a conjecture, and is now a theorem, which states that an M-curve of even degree <math>2d</math> obeys the congruence

<math> p - n \equiv d^2\, (\!\bmod 8),</math>

where <math>p</math> is the number of positive ovals and <math>n</math> the number of negative ovals of the M-curve. (Here, the term M-curve stands for "maximal curve"; it means a smooth algebraic curve over the reals whose genus is <math>k-1</math>, where <math>k</math> is the number of maximal components of the curve.[1])

The theorem was proved by the combined works of Vladimir Arnold and Vladimir Rokhlin.[2][3][4]

See also

References

Шаблон:Reflist