Английская Википедия:Heat burst

Материал из Онлайн справочника
Версия от 03:53, 20 марта 2024; EducationBot (обсуждение | вклад) (Новая страница: «{{Английская Википедия/Панель перехода}} {{Short description|Sudden increase in atmospheric temperature}} {{distinguish|heat wave}} {{Use dmy dates|date=July 2023}} {{Weather}} In meteorology, a '''heat burst''' is a rare atmospheric phenomenon characterized by a sudden, localized increase in air temperature near the Earth's surface. Heat bursts typically occur during night-time and are associated with decaying thu...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

Шаблон:Short description Шаблон:Distinguish Шаблон:Use dmy dates

Шаблон:Weather In meteorology, a heat burst is a rare atmospheric phenomenon characterized by a sudden, localized increase in air temperature near the Earth's surface. Heat bursts typically occur during night-time and are associated with decaying thunderstorms.[1] They are also characterized by extremely dry air and are sometimes associated with very strong, even damaging, winds.

Although the phenomenon is not fully understood, the event is thought to occur when rain evaporates (virga) into a parcel of cold, dry air high in the atmosphere, making the air denser than its surroundings.[2] The parcel descends rapidly, warming due to compression, overshoots its equilibrium level, and reaches the surface, similar to a downburst.[3]

Recorded temperatures during heat bursts have reached well above Шаблон:Convert, sometimes rising by Шаблон:Convert or more within only a few minutes.

Characteristics

In general, heat bursts occur during the late spring and summer seasons. During these times, air-mass thunderstorms tend to generate due to daytime heating and lose their main energy during the evening hours.[4] Due to the potential temperature increase, heat bursts normally occur at night, though they have also been recorded during the daytime. Heat bursts can vary widely in duration, from a couple of minutes to several hours. The phenomenon is usually accompanied by strong gusty winds, extreme temperature changes, and an extreme decrease in humidity. They may occur near the end of a weakening thunderstorm cluster. Dry air and a low-level temperature inversion may also be present during the storm.[5]

Causes

Heat bursts are thought to be caused by a mechanism similar to that of downbursts. As the thunderstorm starts to dissipate, the layer of clouds starts to rise. After the clouds have risen, a rain-cooled layer remains. The cluster shoots a burst of unsaturated air down towards the ground. In doing so, the system loses all of its updraft-related fuel.[6] The raindrops begin to evaporate into dry air, which reinforces the effects of the heat burst (evaporation cools the air, increasing its density). As the unsaturated air descends into lower levels of the atmosphere, the air pressure increases. The descending air parcel warms at the dry adiabatic lapse rate of approximately 10 °C per 1000 meters (5.5 °F per 1000 feet) of descent. The warm air from the cluster replaces the cool air on the ground. The effect is similar to someone blowing down on a puddle of water.

On 4 March 1990, the National Weather Service in Goodland, Kansas, detected a system that had weakened, containing light rain showers and snow showers. It was followed by gusty winds and a temperature increase. The detection proved that heat bursts can occur in both summer months and winter months, and also that a weakening thunderstorm was not necessary for the development of a heat burst.

Microburst cross section

Forecasting

The first step in forecasting and preparing for heat bursts is recognizing the events that precede them. Rain from a high convection cloud falls below cloud level and evaporates, cooling the air. Air parcels that are cooler than the surrounding environment descend in altitude. Lastly, temperature conversion mixed with a downdraft momentum continues downward until the air reaches the ground. The air parcels then become warmer than their environment.

McPherson, Lane, Crawford, and McPherson Jr. researched the heat burst system at the Oklahoma Mesonet, which is owned by both the University of Oklahoma and Oklahoma State University. The purpose of their research was to discover any technological benefits and challenges in detecting heat bursts, to document the time of day and year at which heat bursts are most likely to occur, and to research the topography of where heat bursts are most likely to occur in Oklahoma.

Scientists and meteorologists use archived data to manually study data that detected 390 potential heat burst days during a fifteen-year period. In studying the archived data, they observed that 58% of the potential days had dry line passages, frontal passages, or a temperature change due to an increase in solar radiation in the hours of the morning or a daytime precipitation weather system.

By studying the archived data, scientists have the ability to determine the beginning, peak, and end of heat burst conditions. The peak of heat burst conditions is the maximum observed temperature. The beginning of a heat burst is the time during which the air temperature increases without decreasing until after the peak; the end of a heat burst is when the system ceases to affect the temperature and dew point of the area.

In addition to researching the life cycle and characteristics of heat bursts, a group of scientists concluded that the topography of Oklahoma coincided with the change in atmospheric moisture between northwest and southeast Oklahoma. An increase in convection normally occurs over the High Plains of the United States during the late spring and summer. They also concluded that a higher increase in convection develops if a mid-tropospheric lifting mechanism interacts with an elevated moist layer.[7]

Documented cases

Date Location Temperature °F/°C (Initial) Temperature °F/°C (Final) Difference (Max) Reference(s)
9 September 2023 Schertz, TX 73 °F (23 °C) 93 °F (34 °C) 20 °F [8]
24 July 2023 Death Valley, California Шаблон:Convert Шаблон:Convert 16 °F [9]
17 July 2023 Cherokee, Oklahoma Шаблон:Convert Шаблон:Convert 13 °F [10][11]
Шаблон:Dts Georgetown, Texas Шаблон:Convert Шаблон:Convert 17°F [12]
11 October 2022 Durban, South Africa Шаблон:Convert Шаблон:Convert 12°F [13]
Шаблон:Dts Tracy, Minnesota Шаблон:Convert Шаблон:Convert 13°F [14]
Шаблон:Dts Beja, Portugal Шаблон:Convert Шаблон:Convert 18.9°F [15]
Шаблон:Dts Greenville, North Carolina Шаблон:Convert Шаблон:Convert 13°F [16]
Шаблон:Dts Littleton, Colorado Шаблон:Convert Шаблон:Convert 16°F [17][18]
Шаблон:Dts Friona, Texas Шаблон:Convert Шаблон:Convert 18°F [19][20][21]
18 May 2021 San Antonio, Texas 79 °F (26 °C) 91 °F (33 °C) 12°F [22][23]
Шаблон:Dts Edmond, Oklahoma Шаблон:N/a Шаблон:Convert Шаблон:N/a [24]
Шаблон:Dts Donna Nook, Lincolnshire, England Шаблон:Convert Шаблон:Convert 18°F [25]
Шаблон:Dts Chicago, Illinois Шаблон:Convert Шаблон:Convert 7°F [26][27][28]
Шаблон:Dts Chicago, Illinois Шаблон:Convert Шаблон:Convert 8°F
Шаблон:DtsШаблон:Efn Hobart, Oklahoma Шаблон:Convert Шаблон:Convert 25.2°F [29]
Шаблон:Dts Calgary, Alberta Шаблон:Convert Шаблон:Convert 7°F [30][31][32]
Шаблон:Dts Melbourne, Victoria Шаблон:Convert Шаблон:Convert 16.2°F [33][34][35]
Шаблон:Convert Шаблон:Convert 14.9°F
Шаблон:Convert Шаблон:Convert 12.6°F
Шаблон:Convert Шаблон:Convert 5°F
Шаблон:Dts Grand Island, Nebraska Шаблон:Convert Шаблон:Convert 19.5°F [36]
Шаблон:Dts Dane County, Wisconsin Шаблон:N/a Шаблон:N/a 10°F [37]
Шаблон:Dts South Dakota Шаблон:Convert Шаблон:Convert 21°F [38]
Шаблон:Dts Georgetown, South Carolina Шаблон:Convert Шаблон:Convert 11°F [39]
Шаблон:Dts Bussey, Iowa Шаблон:Convert Шаблон:Convert 11°F [40][41]
Шаблон:Dts Torcy, Seine-et-Marne, France Шаблон:Convert Шаблон:Convert 18.9°F [42]
Шаблон:Dts Atlantic, Iowa Шаблон:Convert Шаблон:Convert 14°F [43][44][45]
Шаблон:Dts Indianapolis, Indiana Шаблон:N/a Шаблон:N/a 15°F [46]
Шаблон:Dts Wichita, Kansas Шаблон:Convert Шаблон:Convert 17°F [47]
Шаблон:Dts Buenos Aires, Argentina Шаблон:Convert Шаблон:Convert 6.4°F [48]
Шаблон:Dts Delmarva Peninsula Шаблон:Convert Шаблон:Convert 19°F [49]
Шаблон:Dts Edmonton, Alberta Шаблон:Convert Шаблон:Convert 16°F [50][51][52][53][54]
Шаблон:Dts Sioux Falls, South Dakota Шаблон:Convert Шаблон:Convert 31°F [55]
Шаблон:Dts Cozad, Nebraska Шаблон:N/a Шаблон:N/a 20°F [56]
Шаблон:Dts Midland, Texas Шаблон:Convert Шаблон:Convert 26°F [57][58]
Шаблон:Dts Emporia, Kansas Шаблон:Convert Шаблон:Convert 20°F [59]
Шаблон:Dts Canby, Minnesota Шаблон:N/a Шаблон:Convert Шаблон:N/a [60]
Шаблон:Dts Hastings, Nebraska Шаблон:Convert Шаблон:Convert 19°F [61][62]
Шаблон:Dts Wichita Falls, Texas Шаблон:Convert Шаблон:Convert 11°F [63][64]
Шаблон:Dts Chickasha, Oklahoma Шаблон:Convert Шаблон:Convert 14.3°F [65]
Шаблон:Dts Ninnekah, Oklahoma Шаблон:Convert Шаблон:Convert 13.5°F
Шаблон:Dts Phoenix, Arizona Шаблон:Convert Шаблон:Convert 8°F [66]
Шаблон:Dts Barcelona, Spain Шаблон:N/a Шаблон:N/a 23°F [67]
Шаблон:Dts Barcelona, Spain Шаблон:N/a Шаблон:N/a 23 °F
Шаблон:Dts Kopperl, Texas Шаблон:Convert Шаблон:Convert 25 °F Possible that temps rose above Шаблон:Convert, however thermometers designed to detect temperatures up to Шаблон:Convert broke.[68]

See also

Notes

Шаблон:Notelist

References

Шаблон:Reflist

External links

  1. Шаблон:Cite book
  2. Шаблон:Cite web
  3. Шаблон:Cite journal
  4. National Weather Service Albuquerque, NM Weather Forecast Office. "Heat Bursts". Retrieved from http://www.srh.noaa.gov/abq/?n=localfeatureheatburst
  5. Шаблон:Cite web
  6. National Weather Service. Wilmington, North Carolina. "Georgetown Heat Burst." Retrieved from www.weather.gov/ilm/GeorgetownHeatBurst.
  7. Kenneth Crawford, Justin Lane, Renee McPherson, William McPherson Jr. "A Climatological Analysis of Heat Bursts in Oklahoma (1994-2009)." International Journal of Climatology. Volume 31. Issue 4. Pages 531-544. (10 Mar.).
  8. Шаблон:Cite web
  9. Шаблон:Cite web
  10. Шаблон:Cite web
  11. Шаблон:Cite web
  12. Шаблон:Cite web
  13. Шаблон:Cite web
  14. Шаблон:Cite web
  15. Шаблон:Cite web
  16. Шаблон:Cite web
  17. Шаблон:Cite web
  18. Шаблон:Cite web
  19. Шаблон:Cite web
  20. Шаблон:Cite tweet
  21. Шаблон:Cite tweet
  22. Шаблон:Cite web
  23. Шаблон:Cite web
  24. Шаблон:Cite tweet
  25. Шаблон:Cite news
  26. Шаблон:Cite web
  27. Шаблон:Cite web
  28. Шаблон:Cite web
  29. Шаблон:Cite web
  30. Шаблон:Citation
  31. Шаблон:Citation
  32. Шаблон:Citation
  33. Шаблон:Cite web
  34. Шаблон:Cite web
  35. Шаблон:Cite web
  36. Шаблон:Cite web
  37. Шаблон:Cite web
  38. Шаблон:Cite web
  39. Шаблон:Cite web
  40. Шаблон:Cite web Шаблон:Dead link
  41. Шаблон:Cite web
  42. Шаблон:Cite web
  43. Шаблон:Cite web
  44. Шаблон:Cite web
  45. Шаблон:Cite web
  46. Шаблон:Cite web
  47. http://www.kwch.com/kwch-jab-did-you-feel-this-mornings-heat-burst-20110609,0,5006130.story Шаблон:Dead link
  48. Шаблон:Cite web
  49. Heat burst erh.noaa.gov Шаблон:Dead link
  50. Шаблон:Cite web
  51. Шаблон:Cite web
  52. Шаблон:Cite web
  53. Шаблон:Cite web
  54. Шаблон:Cite web
  55. Шаблон:Cite web
  56. Шаблон:Cite web
  57. http://www.mywesttexas.com/articles/2008/06/17/news/top_stories/doc4857af7c54b33314052160.txt Шаблон:Dead link
  58. Шаблон:Cite web
  59. Шаблон:Cite web
  60. Шаблон:Cite web
  61. Шаблон:Cite web
  62. Шаблон:Cite web
  63. Шаблон:Cite web
  64. Шаблон:Cite web
  65. Шаблон:Cite web
  66. Шаблон:Cite web
  67. ARÚS DUMENJO, J. (2001): "Reventones de tipo cálido en Cataluña", V Simposio nacional de predicción del Instituto Nacional de Meteorología, Ministerio de Medio Ambiente, Madrid, págs. 1-7 Repositorio Arcimís, http://repositorio.aemet.es/handle/20.500.11765/4699 (versión electrónica).[1] [2] [3] [4]
  68. Шаблон:Cite web