Английская Википедия:Hecke algebra

Материал из Онлайн справочника
Версия от 05:28, 20 марта 2024; EducationBot (обсуждение | вклад) (Новая страница: «{{Английская Википедия/Панель перехода}} {{For|other mathematical rings called Hecke algebras|Hecke algebra (disambiguation)}} In mathematics, the '''Hecke algebra''' is the algebra generated by Hecke operators. ==Properties== The algebra is a commutative ring.<ref>{{harvnb|Serre|1973|loc=Ch. VII, § 5. Corollary 2.}}</ref> In the classical elliptic modular form theory, the Hecke op...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

Шаблон:For In mathematics, the Hecke algebra is the algebra generated by Hecke operators.

Properties

The algebra is a commutative ring.[1]

In the classical elliptic modular form theory, the Hecke operators Tn with n coprime to the level acting on the space of cusp forms of a given weight are self-adjoint with respect to the Petersson inner product. Therefore, the spectral theorem implies that there is a basis of modular forms that are eigenfunctions for these Hecke operators. Each of these basic forms possesses an Euler product. More precisely, its Mellin transform is the Dirichlet series that has Euler products with the local factor for each prime p is the reciprocal of the Hecke polynomial, a quadratic polynomial in ps.[2] In the case treated by Mordell, the space of cusp forms of weight 12 with respect to the full modular group is one-dimensional. It follows that the Ramanujan form has an Euler product and establishes the multiplicativity of τ(n).Шаблон:Cn

See also

References

Шаблон:Reflist


Шаблон:Algebra-stub