Английская Википедия:Hesse normal form

Материал из Онлайн справочника
Версия от 05:37, 21 марта 2024; EducationBot (обсуждение | вклад) (Новая страница: «{{Английская Википедия/Панель перехода}} thumb|upright=1.0|Distance from the origin O to the line E calculated with the Hesse normal form. Normal vector in red, line in green, point O shown in blue. The '''Hesse normal form''' named after Otto Hesse, is an equation used in analytic geometry, and describes a line in <math>\mathbb{R}^2</math> or a plane (geometry)|pl...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

Файл:Hesse normalenform.svg
Distance from the origin O to the line E calculated with the Hesse normal form. Normal vector in red, line in green, point O shown in blue.

The Hesse normal form named after Otto Hesse, is an equation used in analytic geometry, and describes a line in <math>\mathbb{R}^2</math> or a plane in Euclidean space <math>\mathbb{R}^3</math> or a hyperplane in higher dimensions.[1][2] It is primarily used for calculating distances (see point-plane distance and point-line distance).

It is written in vector notation as

<math>\vec r \cdot \vec n_0 - d = 0.\,</math>

The dot <math>\cdot</math> indicates the scalar product or dot product. Vector <math>\vec r</math> points from the origin of the coordinate system, O, to any point P that lies precisely in plane or on line E. The vector <math>\vec n_0</math> represents the unit normal vector of plane or line E. The distance <math>d \ge 0</math> is the shortest distance from the origin O to the plane or line.

Derivation/Calculation from the normal form

Note: For simplicity, the following derivation discusses the 3D case. However, it is also applicable in 2D.

In the normal form,

<math>(\vec r -\vec a)\cdot \vec n = 0\,</math>

a plane is given by a normal vector <math>\vec n</math> as well as an arbitrary position vector <math>\vec a</math> of a point <math>A \in E</math>. The direction of <math>\vec n</math> is chosen to satisfy the following inequality

<math>\vec a\cdot \vec n \geq 0\,</math>

By dividing the normal vector <math>\vec n</math> by its magnitude <math>| \vec n |</math>, we obtain the unit (or normalized) normal vector

<math>\vec n_0 = {{\vec n} \over {| \vec n |}}\,</math>

and the above equation can be rewritten as

<math>(\vec r -\vec a)\cdot \vec n_0 = 0.\,</math>

Substituting

<math>d = \vec a\cdot \vec n_0 \geq 0\,</math>

we obtain the Hesse normal form

<math>\vec r \cdot \vec n_0 - d = 0.\,</math>
Файл:Ebene Hessesche Normalform.PNG

In this diagram, d is the distance from the origin. Because <math>\vec r \cdot \vec n_0 = d</math> holds for every point in the plane, it is also true at point Q (the point where the vector from the origin meets the plane E), with <math>\vec r = \vec r_s</math>, per the definition of the Scalar product

<math>d = \vec r_s \cdot \vec n_0 = |\vec r_s| \cdot |\vec n_0| \cdot \cos(0^\circ) = |\vec r_s| \cdot 1 = |\vec r_s|.\,</math>

The magnitude <math>|\vec r_s|</math> of <math>{\vec r_s}</math> is the shortest distance from the origin to the plane.

References

Шаблон:Reflist

External links

  1. Шаблон:Citation.
  2. John Vince: Geometry for Computer Graphics. Springer, 2005, Шаблон:ISBN, pp. 42, 58, 135, 273