Английская Википедия:Hexagonal crystal family

Материал из Онлайн справочника
Версия от 07:02, 21 марта 2024; EducationBot (обсуждение | вклад) (Новая страница: «{{Английская Википедия/Панель перехода}} {{Short description|Union of crystal groups with related structures and lattices}} {{distinguish|Hexagonal lattice}} {| class=wikitable align=right width=300 |- valign=top align=center ! Crystal system | colspan=2| Trigonal | Hexagonal |- valign=top align=center ! Lattice system | 100px<br>Rhombohedral | colspan=2| 100px<br>Hexag...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

Шаблон:Short description Шаблон:Distinguish

Crystal system Trigonal Hexagonal
Lattice system Файл:Rhombohedral.svg
Rhombohedral
Файл:Hexagonal lattice.svg
Hexagonal
Example Файл:Dolomite sur mimétite (Maroc).jpg
Dolomite (white)
Файл:Kwarc, Madagaskar.jpg
α-Quartz
Файл:Berillo.jpg
Beryl

In crystallography, the hexagonal crystal family is one of the 6 crystal families, which includes two crystal systems (hexagonal and trigonal) and two lattice systems (hexagonal and rhombohedral). While commonly confused, the trigonal crystal system and the rhombohedral lattice system are not equivalent (see section crystal systems below).[1] In particular, there are crystals that have trigonal symmetry but belong to the hexagonal lattice (such as α-quartz).

The hexagonal crystal family consists of the 12 point groups such that at least one of their space groups has the hexagonal lattice as underlying lattice, and is the union of the hexagonal crystal system and the trigonal crystal system.[2] There are 52 space groups associated with it, which are exactly those whose Bravais lattice is either hexagonal or rhombohedral.

Lattice systems

The hexagonal crystal family consists of two lattice systems: hexagonal and rhombohedral. Each lattice system consists of one Bravais lattice.

Файл:RhombohedralR.svg
Relation between the two settings for the rhombohedral lattice
Hexagonal crystal family
Bravais lattice Hexagonal Rhombohedral
Pearson symbol hP hR
Hexagonal
unit cell
Hexagonal, primitive Hexagonal, R-centered
Rhombohedral
unit cell
Rhombohedral, D-centered Rhombohedral, primitive

In the hexagonal family, the crystal is conventionally described by a right rhombic prism unit cell with two equal axes (a by a), an included angle of 120° (γ) and a height (c, which can be different from a) perpendicular to the two base axes.

The hexagonal unit cell for the rhombohedral Bravais lattice is the R-centered cell, consisting of two additional lattice points which occupy one body diagonal of the unit cell. There are two ways to do this, which can be thought of as two notations which represent the same structure. In the usual so-called obverse setting, the additional lattice points are at coordinates (Шаблон:2/3, Шаблон:1/3, Шаблон:1/3) and (Шаблон:1/3, Шаблон:2/3, Шаблон:2/3), whereas in the alternative reverse setting they are at the coordinates (Шаблон:1/3,Шаблон:2/3,Шаблон:1/3) and (Шаблон:2/3,Шаблон:1/3,Шаблон:2/3).[3] In either case, there are 3 lattice points per unit cell in total and the lattice is non-primitive.

The Bravais lattices in the hexagonal crystal family can also be described by rhombohedral axes.[4] The unit cell is a rhombohedron (which gives the name for the rhombohedral lattice). This is a unit cell with parameters a = b = c; α = β = γ ≠ 90°.[5] In practice, the hexagonal description is more commonly used because it is easier to deal with a coordinate system with two 90° angles. However, the rhombohedral axes are often shown (for the rhombohedral lattice) in textbooks because this cell reveals the Шаблон:Overlinem symmetry of the crystal lattice.

The rhombohedral unit cell for the hexagonal Bravais lattice is the D-centeredШаблон:R cell, consisting of two additional lattice points which occupy one body diagonal of the unit cell with coordinates (Шаблон:1/3, Шаблон:1/3, Шаблон:1/3) and (Шаблон:2/3, Шаблон:2/3, Шаблон:2/3). However, such a description is rarely used.

Crystal systems

Crystal system Required symmetries of point group Point groups Space groups Bravais lattices Lattice system
Trigonal 1 threefold axis of rotation 5 7 1 Rhombohedral
18 1 Hexagonal
Hexagonal 1 sixfold axis of rotation 7 27

The hexagonal crystal family consists of two crystal systems: trigonal and hexagonal. A crystal system is a set of point groups in which the point groups themselves and their corresponding space groups are assigned to a lattice system (see table in Crystal system#Crystal classes).

The trigonal crystal system consists of the 5 point groups that have a single three-fold rotation axis, which includes space groups 143 to 167. These 5 point groups have 7 corresponding space groups (denoted by R) assigned to the rhombohedral lattice system and 18 corresponding space groups (denoted by P) assigned to the hexagonal lattice system. Hence, the trigonal crystal system is the only crystal system whose point groups have more than one lattice system associated with their space groups.

The hexagonal crystal system consists of the 7 point groups that have a single six-fold rotation axis. These 7 point groups have 27 space groups (168 to 194), all of which are assigned to the hexagonal lattice system.

Trigonal crystal system

The 5 point groups in this crystal system are listed below, with their international number and notation, their space groups in name and example crystals.[6][7][8]

Space group no. Point group Type Examples Space groups
NameШаблон:R Intl Schoen. Orb. Cox. Hexagonal Rhombohedral
143–146 Trigonal pyramidal 3 C3 33 [3]+ enantiomorphic polar carlinite, jarosite P3, P31, P32 R3
147–148 Rhombohedral Шаблон:Overline C3i (S6) [2+,6+] centrosymmetric dolomite, ilmenite PШаблон:Overline RШаблон:Overline
149–155 Trigonal trapezohedral 32 D3 223 [2,3]+ enantiomorphic abhurite, alpha-quartz (152, 154), cinnabar P312, P321, P3112, P3121, P3212, P3221 R32
156–161 Ditrigonal pyramidal 3m C3v *33 [3] polar schorl, cerite, tourmaline, alunite, lithium tantalate P3m1, P31m, P3c1, P31c R3m, R3c
162–167 Ditrigonal scalenohedral Шаблон:Overlinem D3d 2*3 [2+,6] centrosymmetric antimony, hematite, corundum, calcite, bismuth PШаблон:Overline1m, PШаблон:Overline1c, PШаблон:Overlinem1, PШаблон:Overlinec1 RШаблон:Overlinem, RШаблон:Overlinec

Hexagonal crystal system

The 7 point groups (crystal classes) in this crystal system are listed below, followed by their representations in Hermann–Mauguin or international notation and Schoenflies notation, and mineral examples, if they exist.[2][9]

Space group no. Point group Type Examples Space groups
NameШаблон:R Intl Schoen. Orb. Cox.
168–173 Hexagonal pyramidal 6 C6 66 [6]+ enantiomorphic polar nepheline, cancrinite P6, P61, P65, P62, P64, P63
174 Trigonal dipyramidal Шаблон:Overline C3h 3* [2,3+] laurelite and boric acid PШаблон:Overline
175–176 Hexagonal dipyramidal 6/m C6h 6* [2,6+] centrosymmetric apatite, vanadinite P6/m, P63/m
177–182 Hexagonal trapezohedral 622 D6 226 [2,6]+ enantiomorphic kalsilite and high quartz P622, P6122, P6522, P6222, P6422, P6322
183–186 Dihexagonal pyramidal 6mm C6v *66 [6] polar greenockite, wurtzite[10] P6mm, P6cc, P63cm, P63mc
187–190 Ditrigonal dipyramidal Шаблон:Overlinem2 D3h *223 [2,3] benitoite PШаблон:Overlinem2, PШаблон:Overlinec2, PШаблон:Overline2m, PШаблон:Overline2c
191–194 Dihexagonal dipyramidal 6/mmm D6h *226 [2,6] centrosymmetric beryl P6/mmm, P6/mcc, P63/mcm, P63/mmc

The unit cell volume is given by a2c•sin(60°)

Hexagonal close packed

Шаблон:Main

Файл:Hexagonal close packed.svg
Hexagonal close packed (hcp) unit cell

Hexagonal close packed (hcp) is one of the two simple types of atomic packing with the highest density, the other being the face-centered cubic (fcc). However, unlike the fcc, it is not a Bravais lattice, as there are two nonequivalent sets of lattice points. Instead, it can be constructed from the hexagonal Bravais lattice by using a two-atom motif (the additional atom at about (Шаблон:2/3Шаблон:1/3Шаблон:1/2)) associated with each lattice point.[11]

Multi-element structures

Compounds that consist of more than one element (e.g. binary compounds) often have crystal structures based on the hexagonal crystal family. Some of the more common ones are listed here. These structures can be viewed as two or more interpenetrating sublattices where each sublattice occupies the interstitial sites of the others.

Wurtzite structure

Шаблон:Category see also

Файл:Wurtzite cellGIF.gif
Wurtzite unit cell as described by symmetry operators of the space group.[12]
Файл:Wurtzite-unit-cell-3D-balls.png
Another representation of the wurtzite unit cellШаблон:Citation needed
Файл:Wurtzite polyhedra.png
Another representation of the wurtzite structureШаблон:Citation needed

The wurtzite crystal structure is referred to by the Strukturbericht designation B4 and the Pearson symbol hP4. The corresponding space group is No. 186 (in International Union of Crystallography classification) or P63mc (in Hermann–Mauguin notation). The Hermann-Mauguin symbols in P63mc can be read as follows:[13]

  • 63.. : a six fold screw rotation around the c-axis
  • .m. : a mirror plane with normal {100}
  • ..c : glide plane in the c-directions with normal {120}.

Among the compounds that can take the wurtzite structure are wurtzite itself (ZnS with up to 8% iron instead of zinc), silver iodide (AgI), zinc oxide (ZnO), cadmium sulfide (CdS), cadmium selenide (CdSe), silicon carbide (α-SiC), gallium nitride (GaN), aluminium nitride (AlN), boron nitride (w-BN) and other semiconductors.[14] In most of these compounds, wurtzite is not the favored form of the bulk crystal, but the structure can be favored in some nanocrystal forms of the material.

In materials with more than one crystal structure, the prefix "w-" is sometimes added to the empirical formula to denote the wurtzite crystal structure, as in w-BN.

Each of the two individual atom types forms a sublattice which is hexagonal close-packed (HCP-type). When viewed all together, the atomic positions are the same as in lonsdaleite (hexagonal diamond). Each atom is tetrahedrally coordinated. The structure can also be described as an HCP lattice of zinc with sulfur atoms occupying half of the tetrahedral voids or vice versa.

The wurtzite structure is non-centrosymmetric (i.e., lacks inversion symmetry). Due to this, wurtzite crystals can (and generally do) have properties such as piezoelectricity and pyroelectricity, which centrosymmetric crystals lack.Шаблон:Citation needed

Nickel arsenide structure

Шаблон:Category see also The nickel arsenide structure consists of two interpenetrating sublattices: a primitive hexagonal nickel sublattice and a hexagonal close-packed arsenic sublattice. Each nickel atom is octahedrally coordinated to six arsenic atoms, while each arsenic atom is trigonal prismatically coordinated to six nickel atoms.[15] The structure can also be described as an HCP lattice of arsenic with nickel occupying each octahedral void.

Compounds adopting the NiAs structure are generally the chalcogenides, arsenides, antimonides and bismuthides of transition metals. Шаблон:Citation needed

Файл:Nickel-arsenide-3D-unit-cell.png
The unit cell of nickeline

The following are the members of the nickeline group:[16]

In two dimensions

Шаблон:Main There is only one hexagonal Bravais lattice in two dimensions: the hexagonal lattice.

Bravais lattice Hexagonal
Pearson symbol hp
Unit cell Файл:2d hp.svg

See also

References

Шаблон:Reflist

External links

Шаблон:Crystal systems Шаблон:Authority control