Английская Википедия:Hodge–Tate module

Материал из Онлайн справочника
Версия от 09:08, 22 марта 2024; EducationBot (обсуждение | вклад) (Новая страница: «{{Английская Википедия/Панель перехода}} {{distinguish|Tate module}} In mathematics, a '''Hodge–Tate module''' is an analogue of a Hodge structure over p-adic fields. {{harvs|txt|last=Serre|year=1967}} introduced and named Hodge–Tate structures using the results of {{harvs|txt|last=Tate|authorlink=John Tate (mathematician)|year=1967}} on p-divisible groups. ==Definition== Suppose that ''G'' is the absolute...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

Шаблон:Distinguish In mathematics, a Hodge–Tate module is an analogue of a Hodge structure over p-adic fields. Шаблон:Harvs introduced and named Hodge–Tate structures using the results of Шаблон:Harvs on p-divisible groups.

Definition

Suppose that G is the absolute Galois group of a p-adic field K. Then G has a canonical cyclotomic character χ given by its action on the pth power roots of unity. Let C be the completion of the algebraic closure of K. Then a finite-dimensional vector space over C with a semi-linear action of the Galois group G is said to be of Hodge–Tate type if it is generated by the eigenvectors of integral powers of χ.

See also

References


Шаблон:Algebraic-geometry-stub