Английская Википедия:Holt graph

Материал из Онлайн справочника
Версия от 13:18, 22 марта 2024; EducationBot (обсуждение | вклад) (Новая страница: «{{Английская Википедия/Панель перехода}} {{infobox graph | name = Holt graph | image = 220px | image_caption = In the Holt graph, all vertices are equivalent, and all edges are equivalent, but edges are not equivalent to their inverses. | namesake = Derek F. Holt | vertices = 27 | edges = 54 | automorphisms= 54 | girth = 5 | diameter = 3 | radius = 3 | chromatic_number = 3 | chromatic_index...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

Шаблон:Infobox graph In graph theory, the Holt graph or Doyle graph is the smallest half-transitive graph, that is, the smallest example of a vertex-transitive and edge-transitive graph which is not also symmetric.[1][2] Such graphs are not common.[3] It is named after Peter G. Doyle and Derek F. Holt, who discovered the same graph independently in 1976[4] and 1981[5] respectively.

The Holt graph has diameter 3, radius 3 and girth 5, chromatic number 3, chromatic index 5 and is Hamiltonian with 98 472 distinct Hamiltonian cycles.[6] It is also a 4-vertex-connected and a 4-edge-connected graph. It has book thickness 3 and queue number 3.[7]

It has an automorphism group of order 54.[6] This is a smaller group than a symmetric graph with the same number of vertices and edges would have. The graph drawing on the right highlights this, in that it lacks reflectional symmetry.

The characteristic polynomial of the Holt graph is

<math>(x^3-6x+2)^6(x+2)^4(x-1)^4(x-4).\ </math>

Gallery

References

Шаблон:Reflist

  1. Doyle, P. "A 27-Vertex Graph That Is Vertex-Transitive and Edge-Transitive But Not L-Transitive." October 1998. [1]
  2. Шаблон:Citation.
  3. Jonathan L. Gross, Jay Yellen, Handbook of Graph Theory, CRC Press, 2004, Шаблон:ISBN, p. 491.
  4. Шаблон:Citation. As cited by MathWorld.
  5. Шаблон:Citation.
  6. 6,0 6,1 Шаблон:MathWorld
  7. Jessica Wolz, Engineering Linear Layouts with SAT. Master Thesis, University of Tübingen, 2018