Английская Википедия:Hurwitz's theorem (number theory)

Материал из Онлайн справочника
Версия от 20:40, 23 марта 2024; EducationBot (обсуждение | вклад) (Новая страница: «{{Английская Википедия/Панель перехода}} {{No footnotes|date = October 2022}} {{short description|Theorem in number theory that gives a bound on a Diophantine approximation}} {{About|a theorem in number theory||Hurwitz's theorem (disambiguation){{!}}Hurwitz's theorem}} In number theory, '''Hurwitz's theorem''', named after Adolf Hurwitz, gives a bound on a Diophantine approximation. The theorem sta...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

Шаблон:No footnotes Шаблон:Short description Шаблон:About In number theory, Hurwitz's theorem, named after Adolf Hurwitz, gives a bound on a Diophantine approximation. The theorem states that for every irrational number ξ there are infinitely many relatively prime integers m, n such that <math display="block">\left |\xi-\frac{m}{n}\right | < \frac{1}{\sqrt{5}\, n^2}.</math>

The condition that ξ is irrational cannot be omitted. Moreover the constant <math>\sqrt{5}</math> is the best possible; if we replace <math>\sqrt{5}</math> by any number <math>A > \sqrt{5}</math> and we let <math>\xi = (1+\sqrt{5})/2</math> (the golden ratio) then there exist only finitely many relatively prime integers m, n such that the formula above holds.

The theorem is equivalent to the claim that the Markov constant of every number is larger than <math>\sqrt{5}</math>.

See also

References