Английская Википедия:Isotopes of aluminium

Материал из Онлайн справочника
Версия от 08:50, 27 марта 2024; EducationBot (обсуждение | вклад) (Новая страница: «{{Английская Википедия/Панель перехода}} {{Short description|Nuclides with atomic number of 13 but with different mass numbers}} {{more citations needed|date=May 2018}} {{Infobox aluminium isotopes}} Aluminium or ''aluminum'' (<sub>13</sub>Al) has 22 known isotopes from <sup>22</sup>Al to <sup>43</sup>Al and 4 known isomers. Only <sup>27</sup>Al (stable isotope) and <sup>26</sup>Al (radioacti...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

Шаблон:Short description Шаблон:More citations needed Шаблон:Infobox aluminium isotopes

Aluminium or aluminum (13Al) has 22 known isotopes from 22Al to 43Al and 4 known isomers. Only 27Al (stable isotope) and 26Al (radioactive isotope, t1/2 = Шаблон:Val) occur naturally, however 27Al comprises nearly all natural aluminium. Other than 26Al, all radioisotopes have half-lives under 7 minutes, most under a second. The standard atomic weight is Шаблон:Val. 26Al is produced from argon in the atmosphere by spallation caused by cosmic-ray protons. Aluminium isotopes have found practical application in dating marine sediments, manganese nodules, glacial ice, quartz in rock exposures, and meteorites. The ratio of 26Al to 10Be has been used to study the role of sediment transport, deposition, and storage, as well as burial times, and erosion, on 105 to 106 year time scales.Шаблон:Citation needed 26Al has also played a significant role in the study of meteorites.

List of isotopes

Шаблон:Isotopes table |- | rowspan=4|22Al | rowspan=4 style="text-align:right" | 13 | rowspan=4 style="text-align:right" | 9 | rowspan=4|22.01954(43)# | rowspan=4|91.1(5) ms | β+, p (55%) | 21Na | rowspan=4|(4)+ | rowspan=4| | rowspan=4| |- | β+ (43.862%) | 22Mg |- | β+, 2p (1.1%) | 20Ne |- | β+, α (0.038%) | 18Ne |- | rowspan=2|23Al | rowspan=2 style="text-align:right" | 13 | rowspan=2 style="text-align:right" | 10 | rowspan=2|23.0072444(4) | rowspan=2|470(30) ms | β+ (99.54%) | 23Mg | rowspan=2|5/2+ | rowspan=2| | rowspan=2| |- | β+, p (0.46%) | 22Na |- | rowspan=3|24Al | rowspan=3 style="text-align:right" | 13 | rowspan=3 style="text-align:right" | 11 | rowspan=3|23.99994754(25) | rowspan=3|2.053(4) s | β+ (99.9634%) | 24Mg | rowspan=3|4+ | rowspan=3| | rowspan=3| |- | β+, α (.035%) | 20Ne |- | β+, p (.0016%) | 23Na |- | rowspan=3 style="text-indent:1em" | 24mAl | rowspan=3 colspan="3" style="text-indent:2em" | 425.8(1) keV | rowspan=3|130(3) ms | IT (82.5%) | 24Al | rowspan=3|1+ | rowspan=3| | rowspan=3| |- | β+ (17.5%) | 24Mg |- | β+, α (.028%) | 20Ne |- | 25Al | style="text-align:right" | 13 | style="text-align:right" | 12 | 24.99042831(7) | 7.183(12) s | β+ | 25Mg | 5/2+ | | |- | rowspan=2 | 26Al[n 1] | rowspan=2 style="text-align:right" | 13 | rowspan=2 style="text-align:right" | 13 | rowspan=2 | 25.98689186(7) | rowspan=2 | 7.17(24)×105 y | β+ (85%) | rowspan=2| 26Mg | rowspan=2| 5+ | rowspan=2| Trace[n 2] | rowspan=2| |- | ε (15%)[1] |- | style="text-indent:1em" | 26mAl | colspan="3" style="text-indent:2em" | 228.306(13) keV | 6.3460(8) s | β+ | 26Mg | 0+ | | |- | 27Al | style="text-align:right" | 13 | style="text-align:right" | 14 | 26.98153841(5) | colspan="3" style="text-align:center;"|Stable | 5/2+ | 1.0000 | |- | 28Al | style="text-align:right" | 13 | style="text-align:right" | 15 | 27.98191009(8) | 2.245(5) min | β | 28Si | 3+ | | |- | 29Al | style="text-align:right" | 13 | style="text-align:right" | 16 | 28.9804532(4) | 6.56(6) min | β | 29Si | 5/2+ | | |- | 30Al | style="text-align:right" | 13 | style="text-align:right" | 17 | 29.982968(3) | 3.62(6) s | β | 30Si | 3+ | | |- | rowspan=2|31Al | rowspan=2 style="text-align:right" | 13 | rowspan=2 style="text-align:right" | 18 | rowspan=2|30.9839498(24) | rowspan=2|644(25) ms | β (98.4%) | 31Si | rowspan=2|5/2(+) | rowspan=2| | rowspan=2| |- | β, n (1.6%) | 30Si |- | rowspan=2|32Al | rowspan=2 style="text-align:right" | 13 | rowspan=2 style="text-align:right" | 19 | rowspan=2|31.988084(8) | rowspan=2|33.0(2) ms | β (99.3%) | 32Si | rowspan=2|1+ | rowspan=2| | rowspan=2| |- | β, n (.7%) | 31Si |- | style="text-indent:1em" | 32mAl | colspan="3" style="text-indent:2em" | 955.7(4) keV | 200(20) ns | IT | 32Al | (4+) | | |- | rowspan=2|33Al | rowspan=2 style="text-align:right" | 13 | rowspan=2 style="text-align:right" | 20 | rowspan=2|32.990878(8) | rowspan=2|41.7(2) ms | β (91.5%) | 33Si | rowspan=2|5/2+ | rowspan=2| | rowspan=2| |- | β, n (8.5%) | 32Si |- | rowspan=2|34Al | rowspan=2 style="text-align:right" | 13 | rowspan=2 style="text-align:right" | 21 | rowspan=2|33.996779(3) | rowspan=2|56.3(5) ms | β (74%) | 34Si | rowspan=2|(4−) | rowspan=2| | rowspan=2| |- | β, n (26%) | 33Si |- | rowspan=2 style="text-indent:1em" | 34mAl | rowspan=2 colspan="3" style="text-indent:2em" | 550(100)# keV | rowspan=2|26(1) ms | β (70%) | 34Si | rowspan=2|(1+) | rowspan=2| | rowspan=2| |- | β, n (30%) | 33Si |- | rowspan=2|35Al | rowspan=2 style="text-align:right" | 13 | rowspan=2 style="text-align:right" | 22 | rowspan=2|34.999760(8) | rowspan=2|37.2(8) ms | β (62%) | 35Si | rowspan=2|5/2+# | rowspan=2| | rowspan=2| |- | β, n (38%) | 34Si |- | rowspan=2|36Al | rowspan=2 style="text-align:right" | 13 | rowspan=2 style="text-align:right" | 23 | rowspan=2|36.00639(16) | rowspan=2|90(40) ms | β (70%) | 36Si | rowspan=2| | rowspan=2| | rowspan=2| |- | β, n (30%) | 35Si |- | rowspan=2|37Al | rowspan=2 style="text-align:right" | 13 | rowspan=2 style="text-align:right" | 24 | rowspan=2|37.01053(19) | rowspan=2|11.5(4) ms | β (71%) | 37Si | rowspan=2|5/2+# | rowspan=2| | rowspan=2| |- | β, n (29%) | 36Si |- | 38Al | style="text-align:right" | 13 | style="text-align:right" | 25 | 38.0174(4) | 9.0(7) ms | β | 38Si | | | |- | rowspan=2|39Al | rowspan=2 style="text-align:right" | 13 | rowspan=2 style="text-align:right" | 26 | rowspan=2|39.02217(43)# | rowspan=2|7.6(16) ms | β, n (90%) | 38Si | rowspan=2|5/2+# | rowspan=2| | rowspan=2| |- | β (10%) | 39Si |- | rowspan=3|40Al | rowspan=3 style="text-align:right" | 13 | rowspan=3 style="text-align:right" | 27 | rowspan=3|40.02962(43)# | rowspan=3|5.7(3 (stat), 2 (sys)) ms[2] | β, n (64%) | 39Si | rowspan=3| | rowspan=3| | rowspan=3| |- | β, 2n (20%) | 38Si |- | β (16%) | 40Si |- | rowspan=3|41Al | rowspan=3 style="text-align:right" | 13 | rowspan=3 style="text-align:right" | 28 | rowspan=3|41.03588(54)# | rowspan=3|3.5(8 (stat), 4 (sys)) ms[2] | β, n (86%) | 40Si | rowspan=3|5/2+# | rowspan=3| | rowspan=3| |- | β, 2n (11%) | 39Si |- | β (3%) | 41Si |- | 42Al | style="text-align:right" | 13 | style="text-align:right" | 29 | 42.04305(64)# | 1# ms [>170 ns] | β | 42Si | | | |- | 43Al | style="text-align:right" | 13 | style="text-align:right" | 30 | 43.05048(86)# | 1# ms [>170 ns] | β | 43Si | | | Шаблон:Isotopes table/footer

Aluminium-26

Шаблон:Main

Файл:Al-26v2.png
The decay level scheme for 26Al and 26mAl to 26Mg.[1][3]

Cosmogenic aluminium-26 was first described in studies of the Moon and meteorites. Meteorite fragments, after departure from their parent bodies, are exposed to intense cosmic-ray bombardment during their travel through space, causing substantial 26Al production. After falling to Earth, atmospheric shielding protects the meteorite fragments from further 26Al production, and its decay can then be used to determine the meteorite's terrestrial age. Meteorite research has also shown that 26Al was relatively abundant at the time of formation of our planetary system. Most meteoriticists believe that the energy released by the decay of 26Al was responsible for the melting and differentiation of some asteroids after their formation 4.55 billion years ago.[4]

References

Шаблон:Reflist

External links

Шаблон:Navbox element isotopes Шаблон:Authority control


Ошибка цитирования Для существующих тегов <ref> группы «n» не найдено соответствующего тега <references group="n"/>