Русская Википедия:1 (число)

Материал из Онлайн справочника
Версия от 05:24, 11 июля 2023; EducationBot (обсуждение | вклад) (Новая страница: «{{Русская Википедия/Панель перехода}} {{Похожие буквы|1}} {{о числе|Единица|1 (значения)|Один (значения)}} {{Натуральное число|factor=единица|roman=Ⅰ|lang1=Греческое|lang1 symbol=α'|lang2=Арабское, Персидская письменн...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

Шаблон:Похожие буквы Шаблон:О числе Шаблон:Натуральное число

1 (оди́н, един, едини́ца, раз) — наименьшее натуральное числоШаблон:Sfn[комм. 1], целое число между 0 и 2.

Обозначение

В математике инков единица обозначалось в кипу в виде одного узла на свисающей нити. В кириллической записи чисел единица обозначалась буквой а (азъ). Арабскими цифрами единица записывается как «1»Шаблон:Sfn.

Свойства

Единица — единственное положительное число, которое равно своему обратному. Поэтому привело к одному из основных понятий в теории групп — нейтральному элементу, часто называемому просто единицей группы.

Для любого числа x:

x·1 = 1·x = x (см.: умножение).
x/1 = x (см.: деление)
x1 = x, 1x = 1, и для ненулевого числа x, x0 = 1 (см.: возведение в степень)
x↑↑1 = x и 1↑↑x = 1 (см.: суперстепень).

Число 1 не может быть самостоятельно использовано как основа позиционной системы счисления, но существует унарная система счисления, которая основана на многократном суммировании единицы, обозначаемой единственной цифрой в унарной системе, и, соответственно, является непозиционной. Поскольку квадрат, куб и любая другая степень числа 1 равняется единице, логарифмы по основанию 1 от числа, не равного 1, не существуют. Логарифм числа 1 по основанию 1 также не определён, так как за его значение может быть принято любое число.

В настоящее время в математике принято не относить единицу ни к простым, ни к составным числам, так как это нарушает важную для теории чисел единственность разложения на простые множители. Последним из профессиональных математиков, кто рассматривал 1 как простое число, был Анри Лебег в 1899 году.

Число 1 — наименьшее натуральное число, большее нуля (является ли нуль натуральным числом — зависит от принятых соглашений). Иногда за определение 1 принимают утверждение «при умножении единицы на любое другое число в результате получается это же число», а натуральные числа определяют, исходя из определений единицы и операции сложения.

Единица также используется в тождестве Эйлера — математическом соотношении пяти констант математики — собственно единицы, нуля, e, π и i:

<math>e^{\pi i}+1=0.</math>

Числом 1 также оказалась константа Лежандра. Изначально сам Лежандр высказал гипотезу о том, что она равна примерно Шаблон:Число, но впоследствии Чебышёв, а затем Валле-Пуссен и Пинтц доказали элементарность этого числа, и константа Лежандра стала иметь лишь историческую ценность.

История

Ряд знаменитых учёных Древней Греции рассматривали каждое из натуральных чисел как собрание единиц; сама же единица числом не считаласьШаблон:Sfn. В XVII веке Декарт и Ньютон приняли в своих трудах более современную точку зрения на сущность числа. Ньютон в трактате «Универсальная арифметика» писал[1]: Шаблон:Начало цитатыПод числом мы понимаем не столько множество единиц, сколько отвлечённое отношение какой-нибудь величины к другой величине того же рода, принятой за единицу. Шаблон:Oq Шаблон:Конец цитаты В XX веке понятие числа окончательно отделилось от операции измерения и рассматривается как чисто математический объект, свойства которого задаются набором аксиом.

Вариации и обобщения

Единица — единственное положительное число, которое равно своему обратному. Поэтому обобщение этого свойства привело к одному из основных понятий в теории групп — понятию нейтрального элемента, который часто называют просто единицей группы.

Единица является автоморфным числом в любой позиционной системе счисления.

В представлении фон Неймана для натуральных чисел единица определяется как множество {0}. Это множество имеет кардинальность 1 и наследственный ранг 1. Такие множества с единственным элементом называются синглетонами.

См. также

Примечания

Комментарии

Шаблон:Примечания

Источники

Шаблон:Примечания

Литература

Ссылки

Шаблон:ВС Шаблон:^v Шаблон:Числа с собственными именамиШаблон:Натуральные числа до 1000


Ошибка цитирования Для существующих тегов <ref> группы «комм.» не найдено соответствующего тега <references group="комм."/>