Русская Википедия:Аффинная геометрия

Материал из Онлайн справочника
Версия от 11:12, 3 августа 2023; EducationBot (обсуждение | вклад) (Новая страница: «{{Русская Википедия/Панель перехода}} '''Аффи́нная геоме́трия''' ({{lang-la|affinis}} ‘родственный’) — раздел геометрии, в котором изучаются свойства фигур, инвариантные относительно аффинных преобразований (например, отношение нап...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

Аффи́нная геоме́трия (Шаблон:Lang-la ‘родственный’) — раздел геометрии, в котором изучаются свойства фигур, инвариантные относительно аффинных преобразований (например, отношение направленных отрезков, параллельность прямых и так далее). Группа аффинных преобразований содержит различные подгруппы, которым соответствуют геометрии, подчинённые аффинной: эквиаффинная геометрия, центроаффинная геометрия и другие.

История

Свойства геометрических фигур, переходящих друг в друга при аффинных преобразованиях, изучались Мёбиусом ещё в первой половине XIX века: в 1827 году вышла его книга «Барицентрическое исчисление»[1], которая стала основополагающей в аффинной геометрии. Однако понятие «аффинная геометрия» возникло лишь после появления в 1872 году «Эрлангенской программы» Ф. Клейна[2], согласно которой каждой группе преобразований отвечает своя геометрия, которая изучает свойства фигур, инвариантные относительно преобразований этой группыШаблон:Sfn.

Примечания

Шаблон:Примечания

Литература


Шаблон:Rq