Русская Википедия:Бернулли, Иоганн

Материал из Онлайн справочника
Версия от 20:32, 4 августа 2023; EducationBot (обсуждение | вклад) (Новая страница: «{{Русская Википедия/Панель перехода}} {{другое значение|Эта статья о математике и механике Иоганне Бернулли. Другие представители '''семьи Бернулли''' и другие значения перечислены на странице Бернулли (семья).}} {{Учёный |Имя = Иоганн I Бернулли...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

Шаблон:Другое значение Шаблон:Учёный Иога́нн Берну́лли (Шаблон:Lang-de, Шаблон:ДР[1], Базель — 1 января 1748, там же) — швейцарский Шаблон:Математик, Шаблон:Механик, врач и филолог-классицист, самый знаменитый представитель семейства Бернулли, младший брат Якоба Бернулли, отец Даниила Бернулли.

Один из первых разработчиков математического анализа, после смерти Ньютона — лидер европейских математиков. Учитель Эйлера.

Иностранный член Парижской (1699)[2], Берлинской (1701)[3], Петербургской (1725; почётный член)[4] академий наук, а также член Лондонского Королевского общества (1712)[5].

Биография

Иоганн стал магистром (искусств) в 18 лет, перешёл на изучение медицины, но одновременно увлёкся математикой (хотя медицину не бросил, по окончании университета всю жизнь занимался врачебной практикой). Вместе с братом Якобом изучает первые статьи Лейбница о методах дифференциального и интегрального исчисления, начинает собственные глубокие исследования.

1691: будучи во Франции, пропагандирует новое исчисление, создав первую парижскую школу анализа. По возвращении в Швейцарию переписывается со своим учеником маркизом де Лопиталем, которому оставил содержательный конспект нового учения из двух частей: исчисление бесконечно малых и интегральное исчисление.

В качестве концептуальной основы действий с бесконечно малыми Иоганн сформулировал в начале лекций три постулата (первая попытка обоснования анализа):

  1. Величина, уменьшенная или увеличенная на бесконечно малую величину, не уменьшается и не увеличивается.
  2. Всякая кривая линия состоит из бесконечно многих прямых, которые сами бесконечно малы.
  3. Фигура, заключенная между двумя ординатами, разностью абсцисс и бесконечно малым куском любой кривой, рассматривается как параллелограмм.

Позже Лопиталь при издании своего учебника отбросил 3-й постулат как излишний, вытекающий из первых.

В этом же 1691 году появился первый печатный труд Иоганна в Acta Eruditorum: он нашёл уравнение «цепной линии» (из-за отсутствия в то время показательной функции построение выполнялось через логарифмическую функцию). Одновременно подробное исследование кривой дали Лейбниц и Гюйгенс.

1692: получено классическое выражение для радиуса кривизны кривой.

1693: подключился к переписке брата с Лейбницем.

1694: защитил докторскую диссертацию по медицине, женился. У него родились 5 сыновей и 4 дочери. В ответ на письмо Лопиталя сообщает ему метод раскрытия неопределённостей, известный сейчас как «правило Лопиталя».

Печатает в Acta Eruditorum статью «Общий способ построения всех дифференциальных уравнений первого порядка». Здесь появились выражения «порядок уравнения» и «разделение переменных» — последним термином Иоганн пользовался ещё в своих парижских лекциях. Выражая сомнение в сводимости любого уравнения к виду с разделяющимися переменными, Иоганн предлагает для уравнений первого порядка общий прием построения всех интегральных кривых при помощи изоклин в определяемом уравнением поле направлений.

1695: По рекомендации Гюйгенса становится профессором математики в Гронингене.

1696: Лопиталь выпускает в Париже под своим именем первый в истории учебник по математическому анализу: «Анализ бесконечно малых для исследования кривых линий» (на французском языке), в основу которого была положена первая часть конспекта Бернулли.

Значение этой книги для распространения нового учения трудно переоценить — не только потому, что она была первой, но и благодаря ясному изложению, прекрасному слогу, обилию примеров. Как и конспект Бернулли, учебник Лопиталя содержал множество приложений; собственно, они занимали львиную долю книги — 95 %.

Практически весь изложенный Лопиталем материал был почерпнут из работ Лейбница и Иоганна Бернулли (авторство которых в общей форме было признано в предисловии). Кое-что, впрочем, Лопиталь добавил и из своих собственных находок в области решения дифференциальных уравнений.

Объяснение этой необычной ситуации — в материальных затруднениях Иоганна после женитьбы [6]. Двумя годами ранее, в письме от 17 марта 1694 г. Лопиталь предложил Иоганну ежегодную пенсию в 300 ливров, с обещанием затем её повысить, при условии, что Иоганн возьмет на себя разработку интересующих его вопросов и будет сообщать ему, и только ему, свои новые открытия, а также никому не пошлёт копии своих сочинений, оставленных в своё время у Лопиталя.

Этот тайный контракт пунктуально соблюдался два года, до издания книги Лопиталя. Позднее Иоганн Бернулли — сначала в письмах к друзьям, а после смерти Лопиталя (1704) и в печати — стал защищать свои авторские праваШаблон:Sfn.

Книга Бернулли — Лопиталя имела оглушительный успех у самой широкой публики, выдержала четыре издания (последнее — в 1781 году), обросла комментариями, была даже (1730) переведена на английский, с заменой терминологии на ньютоновскую (дифференциалов на флюксии и т. п.). В Англии первый общий учебник по анализу вышел только в 1706 г. (Диттон).

1696: Иоганн публикует задачу о брахистохроне: найти форму кривой, по которой материальная точка быстрее всего скатится из одной заданной точки в другую. Ещё Галилей размышлял на эту тему, но ошибочно полагал, что брахистохрона — дуга окружности.

Это была первая в истории вариационная задача динамики, и математики с ней блестяще справились. Иоганн сформулировал задачу в письме Лейбницу, который тотчас её решил и посоветовал выставить на конкурс. Тогда Иоганн опубликовал её в Acta Eruditorum. На конкурс пришли три решения, все верные: от Лопиталя, Якоба Бернулли и (анонимно опубликовано в Лондоне без доказательства) от Ньютона. Кривая оказалась циклоидой. Своё собственное решение Иоганн тоже опубликовал.

1699: вместе с Якобом избран иностранным членом Парижской Академии наук.

1702: совместно с Лейбницем открыл приём разложения рациональных дробей (под интегралом) на сумму простейших.

1705: вернулся в Базельский университет, профессором греческого языка. Восемь раз был избран деканом факультета философии, и дважды — ректором университетаШаблон:Sfn. Сразу после смерти брата Якоба (1705) Иоганн был приглашён на его кафедру в Базеле и занимал её до самой смерти (1748). Незадолго до кончины он опубликовал свою переписку с Лейбницем, представляющую огромный исторический интерес.

Другие научные заслуги: Иоганн Бернулли поставил классическую задачу о геодезических линиях и нашёл характерное геометрическое свойство этих линий, а позднее вывел их дифференциальное уравнение. В 1743 году опубликована монография «Гидравлика», где при исследовании успешно применяется закон сохранения энергии (живой силы, как тогда говорили). Необходимо также отметить, что он воспитал множество учеников, среди которых — Эйлер, Даниил Бернулли и Николас де Бегелин.

К его портрету Вольтер написал четверостишие[7]: Шаблон:Начало цитаты

Его ум видел истину,
Его сердце познало справедливость.
Он — гордость Швейцарии
И всего человечества.

Шаблон:Oq Шаблон:Конец цитаты

В честь Якоба и Иоганна Бернулли назван кратер на Луне.

Труды в русском переводе

  • Бернулли И. Избранные сочинения по механике. М.-Л.: Главная редакция технико-теоретической литературы, 1937. — 297 с.

Примечания

Шаблон:Примечания

Литература

  • Том 1 С древнейших времен до начала Нового времени. — Шаблон:М., Наука, 1970.
  • Том 2 Математика XVII столетия. — Шаблон:М., Наука, 1970.
  • Том 3 Математика XVIII столетия. — Шаблон:М., Наука, 1972.

Внешние ссылки

  1. Юлианский календарь в кантоне Базель использовался до 1700 года.
  2. Les membres du passé dont le nom commence par B Шаблон:WaybackШаблон:Ref-fr
  3. Johann I. Bernoulli Шаблон:WaybackШаблон:Ref-de
  4. Шаблон:Сотрудник РАН
  5. Шаблон:RS id
  6. Truesdell C.  The New Bernoulli Edition // Isis, 49, No. 1 (Mar., 1958). — P. 59—62.
  7. Никифоровский В. А.  «Гордость Швейцарии и всего человечества» Шаблон:Wayback. К 325-летию со дня рождения Иоганна Бернулли // Вестник РАН, № 7 (1992). — С. 87.

Шаблон:Выбор языка Шаблон:- Шаблон:Механики