Русская Википедия:Возраст Вселенной

Материал из Онлайн справочника
Версия от 00:21, 10 августа 2023; EducationBot (обсуждение | вклад) (Новая страница: «{{Русская Википедия/Панель перехода}} {|class="wikitable" style="float:right;" ! ||WMAP<ref>{{cite web|author=Jarosik, N., et.al. (WMAP Collaboration)|title=Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Sky Maps, Systematic Errors, and Basic Results|url=https://lambda.gsfc.nasa.gov/product/map/dr4/pub_papers/sevenyear/basic_results/wmap_7yr_basic_results.pdf|format=PDF|publisher=nasa.gov|accessdate=201...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

WMAP[1] Planck[2] LIGO[3][4]
Возраст Вселенной Шаблон:Math, млрд лет 13,75 ± 0,13 13,799 ± 0,021 11,9—15,7
Постоянная Хаббла Шаблон:Math, (км/с)/Мпк 71,0 ± 2,5 67,74 ± 0,46 70,0Шаблон:Sup sub

Во́зраст Вселе́нной — время, прошедшее с начала расширения Вселенной[5].

По современным представлениям, согласно модели ΛCDM, возраст Вселенной составляет 13,799 ± 0,021 миллиарда лет[2].

Наблюдательные подтверждения в данном случае сводятся, с одной стороны, к подтверждению самой модели расширения и предсказываемых ею моментов начала различных эпох, а с другой, к определению возраста самых старых объектов (он не должен превышать получающийся из модели расширения возраст Вселенной).

Теория

Файл:Age Universe Planck 2013.png
Возраст Вселенной как функция космологических параметров

Современная оценка возраста Вселенной построена на основе одной из распространённых моделей Вселенной, так называемой стандартной космологической ΛCDM-модели. Из неё, в частности, следует, что возраст Вселенной задаётся следующим образом:

Шаблон:Формулы

где Шаблон:Math — постоянная Хаббла на данный момент, a — масштабный фактор.

Основные этапы развития Вселенной

Большое значение для определения возраста Вселенной имеет периодизация основных протекавших во Вселенной процессов. В настоящее время принята следующая периодизация[6]:

  • Самая ранняя эпоха, о которой существуют какие-либо теоретические предположения, — это Планковская эпоха (которая продолжалась в течение планковского времени, от нуля до 10−43 с после Большого взрыва).
  • Вторая фаза развития Вселенной — Эпоха Великого объединения, в ходе которой гравитационное взаимодействие отделилось от остальных фундаментальных взаимодействий. По современным представлениям, эта эпоха квантовой космологии продолжалась до времени порядка 10−34 с после Большого взрыва.
  • Следующие эпохи (Инфляционная эпоха, Бариогенезис, Электрослабая эпоха, Кварковая эпоха, Адронная эпоха, Лептонная эпоха) характеризуются экспоненциальным увеличением кинетической энергии Вселенной и её объёма на много порядков, дальнейшим разделением фундаментальных взаимодействий, аннигиляцией материи и антиматерии приведшей к барионной асимметрии Вселенной, объединением кварков и глюонов в адроны. Эти эпохи продолжалась первые десять секунд после Большого взрыва. В настоящее время существуют возможности достаточно подробного физического описания большинства процессов происходящих в эти периоды.
  • Затем наступили Фотонная эпоха и сменяющая ее Протонная эпоха, в течение первых 20 минут которых происходил первичный нуклеосинтез, в процессе которого образовались элементы не тяжелее лития. Примерно через 70 тыс. лет после большого взрыва вещество начинает доминировать над излучением, что приводит к изменению режима расширения Вселенной.
  • Следующей важной вехой в истории развития Вселенной считается эра рекомбинации, наступившая примерно через 379 тыс. лет после Большого взрыва, температура Вселенной спала до уровня, что ядра смогли захватывать электроны и создавать нейтральные атомы. Вселенная становится прозрачной для фотонов теплового излучения. В настоящее время это излучение мы можем наблюдать в виде реликтового фона, что является важнейшим экспериментальным подтверждением существующих моделей Вселенной.

Наблюдения

Наблюдения звёздных скоплений

Файл:WhiteDwarf.in.NGC6397.jpg
Популяция белых карликов в шаровом звёздном скоплении NGC 6397. Синие квадраты — гелиевые белые карлики, фиолетовые кружки — «нормальные» белые карлики с высоким содержанием углерода.

Главное свойство шаровых скоплений для наблюдательной космологии — много звёзд одного возраста в небольшом пространстве. Это значит, что если каким-то способом измерено расстояние до одного члена скопления, то процентное различие в расстоянии до других членов скопления пренебрежимо мало.

Одновременное формирование всех звёзд скопления позволяет определить его возраст: опираясь на теорию звёздной эволюции, строятся изохроны на диаграмме «цвет — звёздная величина», то есть кривые равного возраста для звёзд различной массы. Сопоставляя их с наблюдаемым распределением звёзд в скоплении, можно определить его возраст.

Метод имеет ряд своих трудностей. Пытаясь их решить, разные команды, в разное время получали разные возрасты для самых старых скоплений, от ~8 млрд лет[7], до ~ 25 млрд лет[8].

В галактиках шаровые скопления, входящие в старую сферическую подсистему галактик, содержат множество белых карликов — остатков проэволюционировавших красных гигантов относительно небольшой массы. Белые карлики лишены собственных источников термоядерной энергии и излучают исключительно за счёт излучения запасов тепла. Белые карлики имеют приблизительно одинаковую массу звёзд-предшественниц, а значит — и приблизительно одинаковую зависимость температуры от времени. Определив по спектру белого карлика его абсолютную звёздную величину на данный момент и зная зависимость время-светимость при остывании, можно определить возраст карлика[9].

Однако данный подход связан как с большими техническими трудностями, — белые карлики крайне слабые объекты, — необходимо крайне чувствительные инструменты, чтоб их наблюдать. Первым и пока единственным телескопом, на котором возможно решение данной задачи является космический телескоп им. Хаббла. Возраст самого старого скопления по данным группы, работавшей с ним: <math>12,7\pm0,7</math> млрд лет[9], однако, результат оспаривается. Оппоненты указывают, что не были учтены дополнительные источники ошибок, их оценка <math>12,4^{+1,8}_{-1,5}</math> млрд лет[10].

Наблюдения непроэволюционировавших объектов

Файл:NGC 1705.jpg
NGC 1705 — галактика типа BCDG

Объекты, фактически состоящие из первичного вещества, дожили до нашего времени благодаря крайне малому темпу их внутренней эволюции. Это позволяет изучать первичный химический состав элементов, а также, не сильно вдаваясь в подробности и основываясь на лабораторных законах ядерной физики, оценить возраст подобных объектов, что даст нижний предел на возраст Вселенной в целом.

К такому типу можно отнести: звёзды малой массы с низкой металличностью (так называемые G-карлики), низкометалличные области HII, а также карликовые неправильные галактики класса BCDG (Blue Compact Dwarf Galaxy).

Согласно современным представлениям, в ходе первичного нуклеосинтеза должен был образоваться литий. Особенность этого элемента заключается в том, что ядерные реакции с его участием начинаются при не очень больших (по космическим масштабам) температурах. И в ходе звёздной эволюции изначальный литий должен был быть практически полностью переработан. Остаться он мог только у массивных звёзд населения типа II. Такие звёзды имеют спокойную, не конвективную атмосферу, благодаря чему литий остаётся на поверхности, не рискуя сгореть в более горячих внутренних слоях звезды.

В ходе измерений обнаружилось, что у большинства таких звёзд обильность лития составляет[11]:

<math>A(Li)=12+\log(Li/H)=2,12</math>.

Однако есть ряд звёзд, в том числе и сверхнизкометалличных, у которых обильность значительно ниже. С чем это связано, до конца не ясно, но есть предположение, что это вызвано процессами в атмосфере[12].

У звезды CS31082-001, принадлежащей звёздному населению типа II, были обнаружены линии и измерены концентрации в атмосфере тория и урана. Эти два элемента имеют различный период полураспада, поэтому со временем их соотношение меняется, и если как-то оценить первоначальное соотношение обильностей, то можно определить возраст звезды. Оценить можно двояким способом: из теории r-процессов, подтверждённой как лабораторными измерениями, так и наблюдениями Солнца; или можно пересечь кривую изменения концентраций за счёт распада и кривую изменения содержания тория и урана в атмосферах молодых звёзд за счёт химической эволюции Галактики. Оба метода дали схожие результаты: 15,5±3,2[13] млрд лет получены первым способом, <math>14{,}5^{-2{,}8}_{+2{,}2}</math>[14] млрд лет — вторым.

Слабо металличные BCDG-галактикам (всего их существует ~10) и зоны HII — источники информации по первичному обилию гелия. Для каждого объекта из его спектра определяется металличность (Z) и концентрация He (Y). Экстраполируя определённым образом диаграмму Y-Z до Z=0, получают оценку первичного гелия.

Итоговое значения Yp разнится от одной группы наблюдателей к другой и от одного периода наблюдений к другому. Так, одна, состоящая из авторитетнейших специалистов в этой области, Изотова и Туан, получили значение Yp=0,245±0,004[15] по BCDG-галактикам, по HII — зонам на данный момент (2010) они остановились на значении Yp=0,2565±0,006[16]. Другая авторитетная группа во главе с Пеймберт (Peimbert) получали также различные значения Yp, от 0,228±0,007 до 0,251±0,006[17].

См. также

Примечания

Шаблон:Примечания

Ссылки

Внешние ссылки

Шаблон:Выбор языка Шаблон:Космология