Английская Википедия:(307261) 2002 MS4
Шаблон:Mp (provisional designation Шаблон:Mp) is a large trans-Neptunian object in the Kuiper belt, a region of icy planetesimals beyond Neptune. It was discovered on 18 June 2002 by Chad Trujillo and Michael Brown during their search for bright, Pluto-sized Kuiper belt objects at Palomar Observatory. Шаблон:Mp has a diameter close to Шаблон:Cvt, which approximately ties it with Шаблон:Mpl and Шаблон:Mpl (to within measurement uncertainties) as the largest unnamed object in the Solar System. Шаблон:Mp is large enough that astronomers consider it a possible dwarf planet.
The surface of Шаблон:Mp is dark gray and is composed of water and carbon dioxide ices. Шаблон:Mp has been observed through stellar occultations, which have revealed massive topographic features along the outline of its shape. These features include a mountain-like peak that is Шаблон:Cvt tall and a crater-like depression that is Шаблон:Cvt wide and Шаблон:Cvt deep. Шаблон:Mp's topographic features are among the tallest and deepest known for Solar System bodies.
History
Discovery
Шаблон:Mp was discovered on 18 June 2002 by astronomers Chad Trujillo and Michael Brown at Palomar Observatory in San Diego County, California, United States.[1] The discovery formed part their Caltech Wide Area Sky Survey for bright, Pluto-sized Kuiper belt objects using the observatory's Шаблон:Convert Samuel Oschin telescope with its wide-field CCD camera, which was operated jointly with the nightly Near Earth Asteroid Tracking program at Palomar.[2]Шаблон:Rp This survey was responsible for the discovery of several other large objects beyond Neptune, which includes the dwarf planets Шаблон:Dp, Шаблон:Dp, and Шаблон:Dp.[3]Шаблон:Rp
Шаблон:Mp was found through manual vetting of potential moving objects identified by the team's automatic image-searching software.[2]Шаблон:Rp It was among the fainter objects detected, just below the survey's limiting magnitude with an observed brightness of magnitude 20.9.[2]Шаблон:Rp Follow-up observations were conducted two months later with Palomar Observatory's Шаблон:Convert telescope on 8 August 2002.[4] The discovery was announced by the Minor Planet Center on 21 November 2002 and the object was given the minor planet provisional designation of Шаблон:Mp.[4]
Further observations
Since receiving follow-up in August 2002, Шаблон:Mp remained unobserved for more than nine months until it was recovered by Trujillo at Palomar Observatory on 29 May 2003, followed by observations by Wolf Bickel at Bergisch Gladbach Observatory in Germany in June 2003.[5] These recovery observations significantly improved Шаблон:Mp's orbit, allowing for further extrapolation of its position backwards in time for identification in precovery observations.[6] Seven precovery observations from Digitized Sky Survey plates were identified by astronomer Andrew Lowe in 2007; the earliest of these was taken on 8 April 1954 by Palomar Observatory.[6][7]Шаблон:Rp Шаблон:Asof, Шаблон:Mp has been observed for over 68 years, or about 25% of its orbital period.[8][1]
Numbering and naming
Шаблон:Mp received its permanent minor planet catalog number of 307261 from the Minor Planet Center on 10 December 2011.[6][9]Шаблон:Rp As of yet, it remains unnamed and the discoverers' privilege for naming this object has expired ten years after its numbering.[1][10]Шаблон:Rp Per naming guidelines by the International Astronomical Union's Working Group for Small Bodies Nomenclature, Шаблон:Mp is open for name suggestions that pertain to creation myths, as required for Kuiper belt objects in general.[10]Шаблон:Rp
Orbit and classification
Шаблон:Mp is a trans-Neptunian object (TNO) orbiting the Sun beyond Neptune with an orbital period of 269 years.[11]Шаблон:Efn Its semi-major axis or average orbital distance from the Sun is 41.7 astronomical units (AU), with a moderate[12]Шаблон:Rp orbital eccentricity of 0.15.[11] In its eccentric orbit, Шаблон:Mp comes within 35.7 AU from the Sun at perihelion and 47.8 AU at aphelion.[11] It has an orbital inclination of nearly 18° with respect to the ecliptic.[11] Шаблон:Mp last passed perihelion in April 1853, passed aphelion in February 1987, and will make its next perihelion passage in June 2123.[13][14][15]
Шаблон:Mp is located in the classical region of the Kuiper belt 37–48 AU from the Sun,[16]Шаблон:Rp and is thus classified as a classical Kuiper belt object or cubewano.[12]Шаблон:Rp Шаблон:Mp's high orbital inclination qualifies it as a dynamically "hot" member of the classical Kuiper belt, which implies that it was gravitationally scattered out to its present location by Neptune's outward planetary migration in the Solar System's early history.[16]Шаблон:Rp Шаблон:Mp's present orbit is far enough from Neptune (minimum orbit intersection distance 6.6 AU)[1] that it no longer experiences scattering from close encounters with the planet.[17][16]Шаблон:Rp
A dynamical study in 2007 simulated Шаблон:Mp's orbital evolution over a 10-million-year timespan and found that it may be in an intermittent 18:11 mean-motion orbital resonance with Neptune,[16]Шаблон:Rp which seems to cause irregular fluctations in Шаблон:Mp's orbital inclination and eccentricity.[16]Шаблон:Rp Despite this, researchers do not consider Шаблон:Mp to be in resonance with Neptune.[17][12]Шаблон:Rp[18]Шаблон:Rp Шаблон:Multiple image
Observability
In the night sky, Шаблон:Mp is located near the Milky Way's Galactic Center in the southern celestial hemisphere. It has been passing through that region's dense field of background stars since its discovery.[18]Шаблон:Rp Combined with Шаблон:Mp's faint apparent magnitude of 20.5 as seen from Earth,[19] its crowded location can make Earth-based observations difficult.[20]Шаблон:Rp[18]Шаблон:Rp On the other hand, Шаблон:Mp's location makes it viable for observing stellar occultations as there are numerous stars for it to pass in front of.[18]Шаблон:Rp
Occultations
Date | Star apparent magnitude (V-band) |
Positive detections |
Negative detectionsШаблон:Efn |
Number of telescope locationsШаблон:Efn |
Continents observed |
---|---|---|---|---|---|
09 Jul 2019 | 15.00 | 2 | 4 | 10 | South America |
26 Jul 2019 | 17.78 | 3 | 0 | 3 | South America |
26 Jul 2019 | 15.45 | 1 | 0 | 1 | North America |
19 Aug 2019 | 16.51 | 2 | 0 | 2 | North America |
26 Jul 2020 | 14.76 | 2 | 0 | 5 | Africa |
8 Aug 2020 | 14.62 | 61 | 40 | 116 | Europe, Africa, Asia |
24 Feb 2021 | 16.51 | 1 | 1 | 2 | South America |
14 Oct 2021 | 15.83 | 2 | 0 | 14 | North America |
10 Jun 2022 | 15.1 | 3 | 0 | 3 | North America, Africa |
Stellar occultations by Шаблон:Mp occur when it passes in front of a star and blocks out its light, causing the star to dim for several seconds until Шаблон:Mp emerges.[21]Шаблон:Rp Observing stellar occultations by Шаблон:Mp can provide precise measurements for its position, shape, and size.[21]Шаблон:Rp[22]Шаблон:Rp Due to parallax between Earth, Шаблон:Mp, and the occulted star, occultations by Шаблон:Mp may only be observable to certain locations on Earth. For this reason, the Шаблон:Mp's orbital trajectory and ephemeris must be precisely known before occultation predictions can be reliably made.[21]Шаблон:Rp[22]Шаблон:Rp
To facilitate occultation predictions for Шаблон:Mp, astronomers of the European Research Council's Lucky Star project gathered astrometric observations of Шаблон:Mp from 2009–2019 to reduce its orbital uncertainty and utilized the Gaia catalogues for high-precision positions of stars.[23][21]Шаблон:Rp From 2019–2022, the Lucky Star project organized campaigns for astronomers worldwide to observe the predicted occultations by Шаблон:Mp, yielding nine successfully-observed occultations by the end of the period.[21]Шаблон:Rp The first successfully-observed occultation by Шаблон:Mp took place in South America on 9 July 2019, which yielded two positive detections and four negative detections from the 10 participating telescope locations; the remaining four telescopes were affected by poor weather.[23][21]Шаблон:Rp More successful observations of Шаблон:Mp's occultations took place on 26 July and 19 August 2019, which provided highly precise astrometry that helped refine later occultation predictions.[24][21]Шаблон:Rp
On 8 August 2020, the Lucky Star project organized a large observing campaign for Шаблон:Mp, which would occult a relatively bright star of apparent magnitude 14.6 and be observable over densely-populated regions in multiple continents.[21]Шаблон:Rp A total of 116 telescope locations from Europe, North Africa, and Western Asia participated in the campaign and yielded 61 positive detections and 40 negative detections, with the remaining 15 telescopes inhibited by poor weather or technical difficulties.[21]Шаблон:Rp The observers of the occultation found no evidence of rings, cometary jets, or natural satellites around Шаблон:Mp.[21]Шаблон:Rp This is the most extensive participation in a TNO occultation campaign Шаблон:Asof.[25]Шаблон:Rp[21]Шаблон:Rp Thanks to the large amount of positive detections across various locations, the global shape outline and topography of Шаблон:Mp could be seen clearly for the first time.[26][21]
-
Map showing the location of telescopes that participated in the 8 August 2020 occultation campaign. Telescopes within the path of Шаблон:Mp's shadow (region between the two solid blue curves) made positive detections (blue and red points), whereas telescopes outside the path made negative detections (green points).
Physical characteristics
Year of Publication |
Diameter (km) |
Method | Refs |
---|---|---|---|
2008 | Шаблон:Val | thermal Шаблон:Small |
[27]Шаблон:Rp |
2009 | Шаблон:Val | thermal Шаблон:Small |
[28]Шаблон:Rp |
2012 | Шаблон:Val | thermal Шаблон:Small |
[29]Шаблон:Rp |
2020 | Шаблон:Val | occultation Шаблон:Small |
[23] |
2022 | Шаблон:Val | occultation Шаблон:Small |
[30] |
2023 | Шаблон:Val | occultation Шаблон:Small |
[21]Шаблон:Efn |
Results from the extensively observed 8 August 2020 occultation show that Шаблон:Mp has a shape close to that of an oblate spheroid, with an equatorial diameter of Шаблон:Cvt and a polar diameter of up to Шаблон:Cvt.[21]Шаблон:Rp Шаблон:Mp's mean diameter from these dimensions is Шаблон:Cvt, which places it between the diameters of the two largest asteroids, Ceres and Vesta.[21]Шаблон:Rp It is unknown whether Шаблон:Mp's equator is being viewed obliquely or edge-on from Earth's perspective, so it is possible that the object's actual polar diameter may be smaller, or have a greater oblateness, than observed in the August 2020 occultation.[21]Шаблон:Rp Шаблон:Mp is the 10th (or 11th if counting Pluto's moon Charon) largest known TNO. Because of its large size, it is considered a dwarf planet candidate by astronomers.[31]Шаблон:Rp[21]Шаблон:Rp[22]Шаблон:Rp With measurement uncertainties considered, it is approximately tied with Шаблон:Mpl and Шаблон:Mpl (diameters Шаблон:Val[32] and Шаблон:Val,[33] respectively) as the largest unnamed object in the Solar System.
Шаблон:Mp was previously thought to have a larger diameter of Шаблон:Cvt, according to infrared thermal emission measurements made by the Spitzer and Herschel space telescopes in 2006 and 2010.[29]Шаблон:Rp This thermal emission-derived diameter disagrees with the occultation-derived diameter; if both the thermal emission measurements and occultation-derived diameter are correct, then Шаблон:Mp would be emitting more thermal radiation than predicted if it were a non-rotating, simple airless body.[22]Шаблон:Rp It is not yet clear why Шаблон:Mp seems to be emitting excess thermal radiation; it could be possible that either there is an unknown satellite of Шаблон:Mp contributing to the excess thermal emission,[21]Шаблон:Rp or the predictions for Шаблон:Mp's thermal emission behavior are inaccurate.[22]Шаблон:Rp
The mass and density of Шаблон:Mp is unknown since it has no known moons, which would have made mass estimates possible by Kepler's third law.[22]Шаблон:Rp Without a known mass and density, it is not possible to determine whether Шаблон:Mp's spheroidal shape is due to hydrostatic equilibrium, which would qualify it as a dwarf planet.[34]Шаблон:Rp Inferring from its diameter and albedo, Шаблон:Mp is probably not in hydrostatic equilibrium since it lies within the Шаблон:Cvt diameter range where TNOs are typically observed with very low densities, presumably due to having highly porous interior structures that have not gravitationally compressed into solid bodies.[35]Шаблон:Rp Otherwise, if Шаблон:Mp is in hydrostatic equilibrium, then its density could be estimated from its oblateness and rotation period.[21]Шаблон:Rp However, both of these properties are poorly known for Шаблон:Mp, so only its minimum and maximum possible densities could be estimated.[21]Шаблон:Rp Assuming a Maclaurin spheroid as the equilibrium shape for Шаблон:Mp, the ranges of possible densities are Шаблон:Val and Шаблон:Val for possible rotation periods of 7.44 and 10.44 hours, respectively.[21]Шаблон:Rp
Surface
Шаблон:TNO imagemap Шаблон:Mp has a gray or spectrally neutral surface color, meaning it reflects similar amounts of light for wavelengths across the visible spectrum.[36]Шаблон:Rp In Barucci et al.'s classification scheme for TNO color indices, Шаблон:Mp falls under the BB group of TNOs with neutral colors, whose surface compositions characteristically have a high fraction of water ice and amorphous carbon but low amounts of tholins.[37]Шаблон:Rp Near-infrared spectroscopy by the James Webb Space Telescope (JWST) in 2022 revealed the presence of crystalline water ice, amorphous water ice, and carbon dioxide ice in Шаблон:Mp's surface.[38][39] The large Kuiper belt object 120347 Salacia was observed by JWST to have a similar surface composition as Шаблон:Mp.[39] Preliminary modeling of Шаблон:Mp's JWST spectrum by Cook et al. suggests that the water ice on the object's surface consists of micrometer-sized grains and the carbon dioxide ice consists of a mix of coarser, micrometer-sized grains to finer, sub-micrometer-sized grains.[39] Tholins should also exist on Шаблон:Mp's surface according to Cook et al.'s preliminary model, although they have not been detected in Шаблон:Mp's JWST spectrum.[39] Volatile ices such as methane were also not detected in Шаблон:Mp's JWST spectrum.[38] The lack of volatiles on Шаблон:Mp's surface agrees with its low geometric albedo of 0.1 determined from observations by the New Horizons spacecraft, which indicates Шаблон:Mp has a very dark and unevolved surface in contrast to the bright and volatile-rich dwarf planets like Pluto.[18]Шаблон:Rp New Horizons observations of Шаблон:Mp's phase curve indicate that the icy regolith grains on the object's surface are rough and irregularly shaped.[18]Шаблон:Rp
Topographic features
The 8 August 2020 occultation revealed massive topographic features along Шаблон:Mp's northeastern outline, or limb, which notably includes a crater-like depression Шаблон:Cvt wide and Шаблон:Cvt deep, and a Шаблон:Val (Шаблон:Val)-tall peak near the rim of the depression.[21]Шаблон:Rp Another depression feature about Шаблон:Cvt wide and Шаблон:Cvt deep was detected by a single telescope from Varages, France during the occultation; this depression feature partially occulted the star as Шаблон:Mp emerged, which resulted in the star brightening gradually instead of instantly.[21]Шаблон:Rp The elevations of these observed topographic features lie beyond the maximum elevation of Шаблон:Cvt expected for an icy body of Шаблон:Mp's size, signifying that the object may have experienced a large impact in its past.[21]Шаблон:Rp It would be possible for Шаблон:Mp to support its massive topographic features if its material strength increases toward its core.[21]Шаблон:Rp Topographic features on other TNOs have been previously observed through occultation, such as Шаблон:Mpl which has a depression feature at least Шаблон:Cvt deep.[40][41]
The topographic peak on Шаблон:Mp has a height comparable to Mars's tallest mountain, Olympus Mons, and the central mound of the Rheasilvia crater on asteroid Vesta.[41][42] If Шаблон:Mp's topographic peak is a mountain, then it would qualify as one of the tallest known mountains in the Solar System.[41] It is possible that this topographic peak may actually be an unknown Шаблон:Cvt-diameter satellite that was passing in front or behind Шаблон:Mp during the occultation, but this scenario is unlikely according to Bruno Sicardy, one of the occultation team members.[21]Шаблон:Rp[41] A satellite of this size would not be large enough to explain Шаблон:Mp's excess thermal emission.[21]Шаблон:Rp
If Шаблон:Mp's massive depression is a crater, then it would be the first observation of a massive crater on a TNO.[21]Шаблон:Rp The depression's width takes up about 40% of Шаблон:Mp's diameter, which is comparable to the largest crater-to-diameter ratios seen in Saturn's moons Tethys and Iapetus. For context, Tethys's largest crater Odysseus takes up about 43% of its diameter, while Iapetus's largest crater Turgis takes up about 40% of its diameter.[21]Шаблон:Rp The trans-Neptunian dwarf planets Pluto and Charon do not exhibit such large craters on the other hand,Шаблон:Efn as their largest crater-to-diameter ratios are 10.5% and 18.9%, respectively.[21]Шаблон:Rp The depth of Шаблон:Mp's massive depression takes up 5.7% of Шаблон:Mp's diameter and exceeds those seen in the largest craters of other Solar System bodies of comparable size: the largest crater of Saturn's moon Mimas has a depth of up to Шаблон:Cvt[43]Шаблон:Rp and Vesta's Rheasilvia crater has a depth of up to Шаблон:Cvt.[42]
Rotation and light curve
The rotation period of Шаблон:Mp is uncertain and its rotational axial tilt is unknown. It is difficult to measure Шаблон:Mp's rotation period photometrically with telescopes on Earth since the object is obscured in a dense field of background stars.[20]Шаблон:Rp[21]Шаблон:Rp Due to Шаблон:Mp's spheroidal shape and possible surface albedo variations, its light curve only exhibits very small fluctuations in brightness (amplitude 0.05–0.12 mag[22]Шаблон:Rp) over time as it rotates.[21]Шаблон:Rp[22]Шаблон:Rp The first attempts at measuring Шаблон:Mp's rotation were made with the Sierra Nevada Observatory's 1.5-meter telescope in August 2005, but it did not observe the object long enough to identify any periodicities in its light curve.[20]Шаблон:Rp Subsequent observations by the Galileo National Telescope in June–July 2011 took advantage of Шаблон:Mp passing in front of a dark nebula, which enabled it to determine possible periods of either 7.33 hours or 10.44 hours, for an assumed single-peaked light curve due to a spheroidal body with albedo variations.[20]Шаблон:Rp On the other hand, observations by the Canada–France–Hawaii Telescope in July–August 2013 measured a rotation period of 14.251 hours, with other less probable rotation period aliases of 8.932 and 5.881 hours.[22]Шаблон:Rp
Exploration
New Horizons
The New Horizons spacecraft observed Шаблон:Mp during 2016–2019, as part of its extended Kuiper belt mission after its successful Pluto flyby in 2015.[18]Шаблон:Rp Шаблон:Mp was Шаблон:Convert away from the spacecraft when it began observations on 13 July 2016, and was Шаблон:Convert away from the spacecraft when it ended observations in 1 September 2019.[18]Шаблон:Rp New Horizons had the unique vantage point of observing Шаблон:Mp and other TNOs while it was inside the Kuiper belt, which allowed the spacecraft to observe these objects at high phase angles (>2°) that are not observable from Earth.[18]Шаблон:Rp By observing how Шаблон:Mp's brightness changes as a function of phase angle, the object's phase curve could be determined, which can reveal the light scattering properties of Шаблон:Mp's surface regolith.[18]Шаблон:Rp In addition to significantly improving the knowledge of Шаблон:Mp's phase curve, the observations by New Horizons also significantly improved the precision of Шаблон:Mp's orbit.[44]
-
Шаблон:Mp imaged by the New Horizons spacecraft in July 2016, from a distance of Шаблон:Convert
-
New Horizons trajectory through the Kuiper belt, with positions of nearby KBOs including Шаблон:Mp labeled
Proposed
Шаблон:Mp has been considered as a possible exploration target for future missions to the Kuiper belt and beyond, such as NASA's Interstellar Probe concept.[45] A 2019 study by Amanda Zangari and collaborators identified several possible trajectories to Шаблон:Mp for a spacecraft that would be launched in 2025–2040.[46] For a spacecraft launched in 2027–2031, a single gravity assist from Jupiter could bring a spacecraft to Шаблон:Mp over a minimum duration of 9.1–12.8 years, depending on the excess launch energy of the spacecraft.[46]Шаблон:Rp Another trajectory using a single Jupiter gravity assist for a 2040 launch date could bring a spacecraft to Шаблон:Mp over a minimum duration of 13 years.[46]Шаблон:Rp A 2038–2040 launch trajectory using a single Saturn gravity assist could bring a spacecraft to Шаблон:Mp over a minimum duration of 16.7 years,[46]Шаблон:Rp while a 2038–2040 launch trajectory using two gravity assists from Jupiter and Saturn could bring a spacecraft to Шаблон:Mp over a minimum duration of 18.6–19.5 years.[46]Шаблон:Rp
See also
Notes
References
External links
- Шаблон:Mp Precovery Images, Andrew Lowe
- Шаблон:JPL small body
Шаблон:Minor planets navigator Шаблон:Dwarf planets Шаблон:Small Solar System bodies Шаблон:Trans-Neptunian objects Шаблон:New Horizons
- ↑ 1,0 1,1 1,2 1,3 Ошибка цитирования Неверный тег
<ref>
; для сносокMPC-object
не указан текст - ↑ 2,0 2,1 2,2 Ошибка цитирования Неверный тег
<ref>
; для сносокTrujillo2003
не указан текст - ↑ Ошибка цитирования Неверный тег
<ref>
; для сносокSchilling2008
не указан текст - ↑ 4,0 4,1 Ошибка цитирования Неверный тег
<ref>
; для сносокMPEC-2002-W27
не указан текст - ↑ Ошибка цитирования Неверный тег
<ref>
; для сносокMPEC-2003-M44
не указан текст - ↑ 6,0 6,1 6,2 Ошибка цитирования Неверный тег
<ref>
; для сносокlowe
не указан текст - ↑ Ошибка цитирования Неверный тег
<ref>
; для сносокMPS231732
не указан текст - ↑ Ошибка цитирования Неверный тег
<ref>
; для сносокjpldata
не указан текст - ↑ Ошибка цитирования Неверный тег
<ref>
; для сносокMPC77416
не указан текст - ↑ 10,0 10,1 Ошибка цитирования Неверный тег
<ref>
; для сносокwgsbn
не указан текст - ↑ 11,0 11,1 11,2 11,3 Ошибка цитирования Неверный тег
<ref>
; для сносокhorizons-ssb
не указан текст - ↑ 12,0 12,1 12,2 Ошибка цитирования Неверный тег
<ref>
; для сносокGladman2008
не указан текст - ↑ Ошибка цитирования Неверный тег
<ref>
; для сносокperihelion-1853
не указан текст - ↑ Ошибка цитирования Неверный тег
<ref>
; для сносокaphelion-1987
не указан текст - ↑ Ошибка цитирования Неверный тег
<ref>
; для сносокperihelion-2123
не указан текст - ↑ 16,0 16,1 16,2 16,3 16,4 Ошибка цитирования Неверный тег
<ref>
; для сносокLykawka2007
не указан текст - ↑ 17,0 17,1 Ошибка цитирования Неверный тег
<ref>
; для сносокBuie
не указан текст - ↑ 18,0 18,1 18,2 18,3 18,4 18,5 18,6 18,7 18,8 18,9 Ошибка цитирования Неверный тег
<ref>
; для сносокVerbiscer2022
не указан текст - ↑ Ошибка цитирования Неверный тег
<ref>
; для сносокAstDys
не указан текст - ↑ 20,0 20,1 20,2 20,3 Ошибка цитирования Неверный тег
<ref>
; для сносокThirouin2013
не указан текст - ↑ 21,00 21,01 21,02 21,03 21,04 21,05 21,06 21,07 21,08 21,09 21,10 21,11 21,12 21,13 21,14 21,15 21,16 21,17 21,18 21,19 21,20 21,21 21,22 21,23 21,24 21,25 21,26 21,27 21,28 21,29 21,30 21,31 21,32 Ошибка цитирования Неверный тег
<ref>
; для сносокRommel2023
не указан текст - ↑ 22,0 22,1 22,2 22,3 22,4 22,5 22,6 22,7 22,8 Ошибка цитирования Неверный тег
<ref>
; для сносокPeng2023
не указан текст - ↑ 23,0 23,1 23,2 Ошибка цитирования Неверный тег
<ref>
; для сносокRommel2020
не указан текст - ↑ Ошибка цитирования Неверный тег
<ref>
; для сносокLuckyStar-20200808
не указан текст - ↑ Ошибка цитирования Неверный тег
<ref>
; для сносокKilic2022
не указан текст - ↑ Ошибка цитирования Неверный тег
<ref>
; для сносокRommel2021
не указан текст - ↑ Ошибка цитирования Неверный тег
<ref>
; для сносокStansberry2008
не указан текст - ↑ Ошибка цитирования Неверный тег
<ref>
; для сносокBrucker2009
не указан текст - ↑ 29,0 29,1 Ошибка цитирования Неверный тег
<ref>
; для сносокVilenius2012
не указан текст - ↑ Ошибка цитирования Неверный тег
<ref>
; для сносокZemouri2022
не указан текст - ↑ Ошибка цитирования Неверный тег
<ref>
; для сносокPinilla-Alonso2015
не указан текст - ↑ Ошибка цитирования Неверный тег
<ref>
; для сносокVilenius2014
не указан текст - ↑ Ошибка цитирования Неверный тег
<ref>
; для сносокSheppard2018
не указан текст - ↑ Ошибка цитирования Неверный тег
<ref>
; для сносокLineweaver2009
не указан текст - ↑ Ошибка цитирования Неверный тег
<ref>
; для сносокGrundy2019
не указан текст - ↑ Ошибка цитирования Неверный тег
<ref>
; для сносокTegler2016
не указан текст - ↑ Ошибка цитирования Неверный тег
<ref>
; для сносокBarucci2005
не указан текст - ↑ 38,0 38,1 Ошибка цитирования Неверный тег
<ref>
; для сносокCook2023
не указан текст - ↑ 39,0 39,1 39,2 39,3 Ошибка цитирования Неверный тег
<ref>
; для сносокCook2023-eposter
не указан текст - ↑ Ошибка цитирования Неверный тег
<ref>
; для сносокDias-Oliveira2017
не указан текст - ↑ 41,0 41,1 41,2 41,3 Ошибка цитирования Неверный тег
<ref>
; для сносокSN-20230829
не указан текст - ↑ 42,0 42,1 Ошибка цитирования Неверный тег
<ref>
; для сносокSchenk2012
не указан текст - ↑ Ошибка цитирования Неверный тег
<ref>
; для сносокMoore2004
не указан текст - ↑ Ошибка цитирования Неверный тег
<ref>
; для сносокLakdawalla2018
не указан текст - ↑ Ошибка цитирования Неверный тег
<ref>
; для сносокRunyon2020
не указан текст - ↑ 46,0 46,1 46,2 46,3 46,4 Ошибка цитирования Неверный тег
<ref>
; для сносокZangari2019
не указан текст
- Страницы с игнорируемыми отображаемыми названиями
- Страницы с неработающими файловыми ссылками
- Английская Википедия
- Classical Kuiper belt objects
- Discoveries by Michael E. Brown
- Discoveries by Chad Trujillo
- Possible dwarf planets
- Objects observed by stellar occultation
- Astronomical objects discovered in 2002
- Страницы, где используется шаблон "Навигационная таблица/Телепорт"
- Страницы с телепортом
- Википедия
- Статья из Википедии
- Статья из Английской Википедии
- Страницы с ошибками в примечаниях