Английская Википедия:2020 in paleontology

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Year nav topic20 Шаблон:Year in paleontology header

Plants

Шаблон:Main

Sponges

Name Novelty Status Authors Age Type locality Country Notes Images
Endostoma stellata[1] Sp. nov Valid Senowbari-Daryan, Fürsich & Rashidi Jurassic (Callovian-Oxfordian) Qale-Dokhtar Limestone Formation Шаблон:Flag A calcareous sponge belonging the family Endostomatidae.

Eoghanospongia[2]

Gen. et sp. nov

Valid

Botting et al.

Silurian (Telychian)

Шаблон:Flag

A hexactinellid sponge. Genus includes new species E. carlinslowpensis. Announced in 2019; the final version of the article naming it was published in 2020.

Eudea maxima[1] Sp. nov Valid Senowbari-Daryan, Fürsich & Rashidi Jurassic (Callovian-Oxfordian) Qale-Dokhtar Limestone Formation Шаблон:Flag A calcareous sponge belonging the family Endostomatidae.
Iniquispongia[1] Gen. et sp. nov Valid Senowbari-Daryan, Fürsich & Rashidi Jurassic (Callovian-Oxfordian) Qale-Dokhtar Limestone Formation Шаблон:Flag A calcareous sponge belonging the family Endostomatidae. The type species is I. iranica.
Polyendostoma? irregularis[1] Sp. nov Valid Senowbari-Daryan, Fürsich & Rashidi Jurassic (Callovian-Oxfordian) Qale-Dokhtar Limestone Formation Шаблон:Flag A calcareous sponge belonging the family Endostomatidae.
Polyendostoma? regularis[1] Sp. nov Valid Senowbari-Daryan, Fürsich & Rashidi Jurassic (Callovian-Oxfordian) Qale-Dokhtar Limestone Formation Шаблон:Flag A calcareous sponge belonging the family Endostomatidae.
Preperonidella tabasensis[1] Sp. nov Valid Senowbari-Daryan, Fürsich & Rashidi Jurassic (Callovian-Oxfordian) Qale-Dokhtar Limestone Formation Шаблон:Flag A calcareous sponge belonging the family Endostomatidae.
Seriespongia[1] Gen. et sp. nov Valid Senowbari-Daryan, Fürsich & Rashidi Middle Jurassic (Callovian) Esfandiar Limestone Formation Шаблон:Flag A calcareous sponge belonging the family Endostomatidae. The type species is S. iranica.

Shouzhispongia[3]

Gen. et 2 sp. nov

In press

Botting et al.

Ordovician (Hirnantian)

Шаблон:Flag

A rossellid sponge. Genus includes S. coronata and S. prodigia.

Spongia mantelli[4]

Nom. nov

Valid

Van Soest, Hooper & Butler

Cretaceous

Шаблон:Flag

A replacement name for Spongia ramosa Mantell (1822).

Cnidarians

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images
Actinoseris riyadhensis[5] Sp. nov Valid Gameil, El-Sorogy & Al-Kahtany Late Cretaceous (Campanian) Aruma Шаблон:Flag A solitary coral. Announced in 2018; the final version of the article naming it was published in 2020.
Alichurastrea[6] Gen. et sp. nov Valid Melnikova & Roniewicz Early Jurassic (probably Pliensbachian) Шаблон:Flag A coral. Genus includes new species A. major. Announced in 2020; the final version of the article naming it was published in 2021.
Alveopora kumadai[7] Sp. nov Valid Niko & Suzuki Miocene (Langhian) Katsuta Group Шаблон:Flag A species of Alveopora.
Amplexus gennarenensis[8] Sp. nov Valid Liao, Liang & Luo Carboniferous (Tournaisian) Шаблон:Flag A rugose coral.
Anthracomedusa? hoferhauseri[9] Sp. nov Valid Szente Early Triassic Werfen Formation Шаблон:Flag A box jellyfish.
Asteroseris arabica[5] Sp. nov Valid Gameil, El-Sorogy & Al-Kahtany Late Cretaceous (Campanian) Aruma Шаблон:Flag A solitary coral. Announced in 2018; the final version of the article naming it was published in 2020.
Bowanophyllum ramosum[10] Sp. nov Valid Wang, Percival & Zhen Ordovician (Katian) Malachis Hill Шаблон:Flag A rugose coral.
Carinthiaphyllum ramovsi[11] Sp. nov Valid Kossovaya, Novak & Weyer Permian (Asselian) Шаблон:Flag A rugose coral belonging to the family Geyerophyllidae.
Colligophyllum[12] Gen. et comb. nov Valid Fedorowski Carboniferous (Bashkirian) Шаблон:Flag A rugose coral. The type species is "Lytvophyllum" dobroljubovae Vassilyuk (1960). Announced in 2020; the final version of the article naming it was published in 2021.
Cunnolites (Plesiocunnolites) riyadhensis[5] Sp. nov Valid Gameil, El-Sorogy & Al-Kahtany Late Cretaceous (Campanian) Aruma Шаблон:Flag A solitary coral. Announced in 2018; the final version of the article naming it was published in 2020.
Eohydnophora baingoinensis[13] Sp. nov Valid Wang et al. Early Cretaceous Шаблон:Flag A stony coral.
Eomicrophyllia[6] Gen. et sp. nov Valid Melnikova & Roniewicz Early Jurassic (probably Pliensbachian) Шаблон:Flag A coral. Genus includes new species E. nalivkini. Announced in 2020; the final version of the article naming it was published in 2021.
Galliconularia[14] Gen. et comb. nov Valid Van Iten & Lefebvre Ordovician (Tremadocian) Saint-Chinian Шаблон:Flag A member of Conulariida. The type species is "Conularia" azaisi Thoral (1935).
Guembelastreomorpha[6] Gen. et sp. nov Valid Melnikova & Roniewicz Early Jurassic (probably Pliensbachian) Шаблон:Flag A coral. Genus includes new species G. vinogradovi. Announced in 2020; the final version of the article naming it was published in 2021.
Gurumdynia[6] Gen. et sp. nov Valid Melnikova & Roniewicz Early Jurassic (probably Pliensbachian) Шаблон:Flag A coral. Genus includes new species G. gracilis. Announced in 2020; the final version of the article naming it was published in 2021.
Hanagyroia[15] Gen. et sp. nov Valid Wang et al. Early Cambrian Kuanchuanpu Шаблон:Flag A medusozoan of uncertain phylogenetic placement, possibly representing an intermediate morphological type between scyphozoans and cubozoans. Genus includes new species H. orientalis.
Hemiagetiolites longiseptatus[10] Sp. nov Valid Wang, Percival & Zhen Ordovician (Katian) Malachis Hill Шаблон:Flag A tabulate coral.
Heteroamphiastrea[16] Gen. et sp. nov Valid Kołodziej Early Cretaceous (Aptian) Шаблон:Flag A stony coral belonging to the superfamily Heterocoenioidea and the family Carolastraeidae. Genus includes new species H. loeseri.
Heterostrotion huaqiaoense[17] Sp. nov Valid Denayer et al. Early Carboniferous Шаблон:Flag A rugose coral
Krynkaphyllum[12] Gen. et 2 sp. nov Valid Fedorowski Carboniferous (Bashkirian) Шаблон:Flag A rugose coral. The type species is K. multiplexum; genus also includes K. validum. Announced in 2020; the final version of the article naming it was published in 2021.
Martsaphyton[18] Gen. et sp. nov Valid Tinn, Vinn & Ainsaar Ordovician (Darriwilian) Шаблон:Flag A member of Medusozoa of uncertain phylogenetic placement. The type species is M. moxi.
Michelinia flugeli[19] Sp. nov Valid Niko & Badpa Carboniferous (Bashkirian) Sardar Formation Шаблон:Flag A tabulate coral belonging to the order Favositida and the family Micheliniidae.
Nancygyra[20] Gen. et sp. nov In press Bosellini & Stolarski in Bosellini et al. Eocene (Ypresian) Шаблон:Flag A member of the family Euphylliidae. The type species is N. dissepimentata.
Neosyringaxon michelini[21] Sp. nov Valid Weyer & Rohart Devonian (Frasnian) Шаблон:Flag A rugose coral belonging to the family Petraiidae
Paramixogonaria wangyouensis[22] Sp. nov Valid Liao & Liang Devonian (Givetian) Wenglai Шаблон:Flag A rugose coral.
Pinacomorpha[6] Gen. et sp. nov Valid Melnikova & Roniewicz Early Jurassic (probably Pliensbachian) Шаблон:Flag A coral. Genus includes new species P. apimelos. Announced in 2020; the final version of the article naming it was published in 2021.
Placophyllia baingoinensis[13] Sp. nov Valid Wang et al. Early Cretaceous Шаблон:Flag A stony coral. Originally described as a species of Placophyllia, but subsequently transferred to the genus Sonoraphyllia.[23]
Placophyllia amnica[6] Sp. nov Valid Melnikova & Roniewicz Early Jurassic (probably Pliensbachian) Шаблон:Flag A placophylliid coral. Announced in 2020; the final version of the article naming it was published in 2021.
Protokionophyllum feninoense[12] Sp. nov Valid Fedorowski Carboniferous (Bashkirian) Шаблон:Flag A rugose coral. Announced in 2020; the final version of the article naming it was published in 2021.
Protostephanastrea[6] Gen. et sp. nov Valid Melnikova & Roniewicz Early Jurassic (probably Pliensbachian) Шаблон:Flag An actinastraeid coral. Genus includes new species P. leveni. Announced in 2020; the final version of the article naming it was published in 2021.
Psenophyllia[6] Gen. et comb. nov Valid Melnikova & Roniewicz Early Jurassic (probably Pliensbachian) Шаблон:Flag A coral. The type species is "Cylindrosmilia" longa Melnikova (1989). Announced in 2020; the final version of the article naming it was published in 2021.
Rotiphyllum xinjiangense[8] Sp. nov Valid Liao, Liang & Luo Carboniferous (Tournaisian) Шаблон:Flag A rugose coral.
Sanidophyllum dubium[24] Sp. nov Valid Yu et al. Devonian (Emsian) Mia Le Шаблон:Flag A rugose coral belonging to the family Breviphyllidae. Announced in 2020; the final version of the article naming was published in 2021.
Sedekastrea[6] Gen. et sp. nov Valid Melnikova & Roniewicz Early Jurassic (probably Pliensbachian) Шаблон:Flag A coral. Genus includes new species S. djalilovi. Announced in 2020; the final version of the article naming it was published in 2021.
Siphonophyllia khenifrense[25] Sp. nov Rodríguez, Said & Somerville in Rodríguez et al. Carboniferous (Viséan) Azrou-Khenifra Шаблон:Flag A rugose coral belonging to the family Cyathopsidae
Stylimorpha[6] Gen. et sp. nov Valid Melnikova & Roniewicz Early Jurassic (probably Pliensbachian) Шаблон:Flag A placophylliid coral. Genus includes new species S. kardjilgensis. Announced in 2020; the final version of the article naming it was published in 2021.
Stylina namcoensis[13] Sp. nov Valid Wang et al. Early Cretaceous Шаблон:Flag A stony coral.
Stylostrotion houi[17] Sp. nov Valid Denayer et al. Carboniferous (Viséan) Шаблон:Flag A rugose coral
Syringopora iranica[19] Sp. nov Valid Niko & Badpa Carboniferous (Serpukhovian) Sardar Formation Шаблон:Flag A tabulate coral belonging to the order Auloporida and the family Syringoporidae.

Research

  • Revision of tabulate-like fossils from before the latest Middle Ordovician is published by Elias, Lee & Pratt (2020), who reject the interpretation of these fossils as true tabulate corals.[26]
  • Drake, Whitelegge & Jacobs (2020) report the first recovery, sequencing, and identification of fossil biomineral proteins from a Pleistocene fossil invertebrate (the stony coral Orbicella annularis).[27]

Arthropods

Шаблон:Main

Bryozoans

Name Novelty Status Authors Age Type locality Country Notes Images
Anastomopora blankenheimensis[28] Sp. nov Valid Ernst Devonian Шаблон:Flag
Anastomopora minor[28] Sp. nov Valid Ernst Devonian Шаблон:Flag
Anomalotoechus parvus[29] Sp. nov Valid Ernst, Bahrami & Parast Devonian (Famennian) Bahram Шаблон:Flag A member of Trepostomata belonging to the group Amplexoporina and to the family Atactotoechidae.
Asperopora sinensis[30] Sp. nov Valid Ernst et al. Silurian (Telychian) Hanchiatien Шаблон:Flag A trepostome bryozoan.

Biforicula collinsi[31]

Sp. nov

Valid

Taylor

Early Cretaceous (Albian)

Gault

Шаблон:Flag

Cheethamia volgaensis[32] Sp. nov Valid Koromyslova & Seltser Late Cretaceous (Maastrichtian) Шаблон:Flag
(Шаблон:Flag)
A member of Cheilostomata
Cribrilaria profunda[33] Sp. nov Valid Rosso, Di Martino & Ostrovsky Pleistocene Шаблон:Flag A member of the family Cribrilinidae.
Dianulites altaicus[34] Sp. nov Valid Koromyslova & Sennikov Ordovician (Sandbian) Шаблон:Flag
(Шаблон:Flag)
A member of Esthonioporata.
Dyscritella kalmardensis[35] Sp. nov Valid Ernst & Gorgij Carboniferous (Pennsylvanian) Siliciclastic Imagh Шаблон:Flag A member of Trepostomata belonging to the group Amplexoporina and to the family Dyscritellidae. Announced in 2019; the final version of the article naming it was published in 2020.
Dyscritella multiporata[35] Sp. nov Valid Ernst & Gorgij Carboniferous (Pennsylvanian) Siliciclastic Imagh Шаблон:Flag A member of Trepostomata belonging to the group Amplexoporina and to the family Dyscritellidae. Announced in 2019; the final version of the article naming it was published in 2020.
Figularia spectabilis[33] Sp. nov Valid Rosso, Di Martino & Ostrovsky Pleistocene Шаблон:Flag A member of the family Cribrilinidae.
Filites bakharevi[36] Sp. nov Valid Mesentseva in Mesentseva & Udodov Devonian (Emsian) Шаблон:Flag
Filites fragilis[36] Sp. nov Valid Udodov in Mesentseva & Udodov Devonian (Emsian) Шаблон:Flag
Filites regularis[36] Sp. nov Valid Mesentseva in Mesentseva & Udodov Devonian (Emsian) Шаблон:Flag
Filites vulgaris[36] Sp. nov Valid Udodov in Mesentseva & Udodov Devonian (Emsian) Шаблон:Flag
Glabrilaria transversocarinata[33] Sp. nov Valid Rosso, Di Martino & Ostrovsky Pleistocene Шаблон:Flag A member of the family Cribrilinidae.
Hemiphragma insolitum[37] Sp. nov Valid Koromyslova & Fedorov Ordovician (Dapingian) Шаблон:Flag A trepostome bryozoan.
Microporella tanyae[38] Sp. nov Valid Di Martino, Taylor & Gordon Pliocene Yorktown Шаблон:Flag
(Шаблон:Flag)
A member of the family Microporellidae.
Moorephylloporina parvula[30] Sp. nov Valid Ernst et al. Silurian (Telychian) Hanchiatien Шаблон:Flag A fenestrate bryozoan.
Parastenodiscus sinaiensis[39] Sp. nov In press Ernst et al. Carboniferous (Mississippian) Шаблон:Flag A member of Trepostomata
Planopora[37] Gen. et sp. nov Valid Koromyslova & Fedorov Ordovician (Dapingian) Шаблон:Flag A bifoliate cystoporate. Genus includes new species P. volkhovensis.
Rhombopora aryani[35] Sp. nov Valid Ernst & Gorgij Carboniferous (Pennsylvanian) Siliciclastic Imagh Шаблон:Flag A member of Cryptostomata belonging to the group Rhabdomesina and to the family Rhomboporidae. Announced in 2019; the final version of the article naming it was published in 2020.
Taylorus patagonicus[40] Sp. nov Valid Pérez et al. Early Miocene Шаблон:Flag A member of the family Escharinidae. Announced in 2020; the final version of the article naming it was published in 2021.
Trematopora jiebeiensis[30] Sp. nov Valid Ernst et al. Silurian (Telychian) Hanchiatien Шаблон:Flag A trepostome bryozoan.
Trematopora tenuis[30] Sp. nov Valid Ernst et al. Silurian (Telychian) Hanchiatien Шаблон:Flag A trepostome bryozoan.
Zefrehopora[29] Gen. et sp. nov Valid Ernst, Bahrami & Parast Devonian (Famennian) Bahram Шаблон:Flag A member of Trepostomata belonging to the group Amplexoporina and to the family Eridotrypellidae. The type species is Z. asynithis.

Brachiopods

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images
Altiplanotoechia[41] Gen. et sp. nov Valid Colmenar in Colmenar & Hodgin Ordovician Umachiri Шаблон:Flag A polytoechioid brachiopod. Genus includes new species A. hodgini.
Beaussetithyris[42] Gen. et sp. nov Gaspard & Charbonnier Late Cretaceous (Santonian) Шаблон:Flag A member of Rhynchonellida belonging to the family Cyclothyrididae. The type species is B. asymmetrica.
Biconvexiella saopauloensis[43] Sp. nov In press Simões et al. Late Paleozoic Taciba Шаблон:Flag
Bockeliena[44] Gen. et comb. nov Valid Baarli Silurian (Rhuddanian) Шаблон:Flag A member of the family Atrypinidae; a new genus for "Atrypa" flexuosa Marr & Nicholson (1888).
Brevilamnulella minuta[45] Sp. nov Valid Jin & Blodgett Late Ordovician Шаблон:Flag
(Шаблон:Flag)
Chilcatreta lariojana[46] Sp. nov Valid Lavié & Benedetto Ordovician Suri Шаблон:Flag A siphonotretid brachiopod. Announced in 2019; the final version of the article naming it was published in 2020.
Chinellirostra[47] Gen. et sp. nov Valid Baranov, Qiao & Blodgett Devonian (Givetian) Шаблон:Flag A member of the family Stringocephalidae. Genus includes new species C. rara. Announced in 2020; the final version of the article naming was published in 2021.
Contortithyris[42] Gen. et sp. nov Gaspard & Charbonnier Late Cretaceous (Santonian) Micraster Шаблон:Flag A member of Rhynchonellida belonging to the family Cyclothyrididae. The type species is C. thermae.
Cyclothyris cardiatelia[48] Sp. nov In press Berrocal-Casero, Barroso-Barcenilla & Joral Late Cretaceous (Coniacian) Шаблон:Flag A member of Rhynchonellida
Cyclothyris grimargina[42] Sp. nov Gaspard & Charbonnier Late Cretaceous (Campanian) Micraster Шаблон:Flag A member of Rhynchonellida belonging to the family Cyclothyrididae
Cyclothyris nekvasilovae[49] Sp. nov Valid Berrocal-Casero, Joral & Barroso-Barcenilla Late Cretaceous (Cenomanian) Шаблон:Flag A member of Rhynchonellida belonging to the family Cyclothyrididae. Announced in 2020; the final version of the article naming it was published in 2021.
Cyclothyris segurai[48] Sp. nov In press Berrocal-Casero, Barroso-Barcenilla & Joral Late Cretaceous (Coniacian) Шаблон:Flag A member of Rhynchonellida
Dihelictera engerensis[44] Sp. nov Valid Baarli Ordovician/Silurian boundary Solvik Шаблон:Flag A member of the family Atrypidae.
Dogdoa talyndzhensis[50] Sp. nov Valid Baranov Early Devonian Шаблон:Flag A member of Rhynchonellida.
Elliptoglossa kononovae[51] Sp. nov Valid Smirnova & Zhegallo Devonian (Famennian) Шаблон:Flag A member of Lingulida.
Enriquetoechia[41] Gen. et sp. nov Valid Colmenar & Hodgin Ordovician Umachiri Шаблон:Flag A polytoechioid brachiopod. Genus includes new species E. umachiriensis.
Eoobolus incipiens[52] Sp. nov In press Zhang, Popov, Holmer & Zhang in Zhang et al. Cambrian Ajax Limestone
Dengying Formation
Mernmerna Formation
Wilkawillina Limestone
Шаблон:Flag
Шаблон:Flag
A member of Linguloidea.
Euroatrypa? sigridi[44] Sp. nov Valid Baarli Ordovician/Silurian boundary Solvik Шаблон:Flag A member of the family Atrypinidae.
Famatinobolus[46] Gen. et sp. nov Valid Lavié & Benedetto Ordovician Suri Шаблон:Flag An obolid brachiopod. Genus includes new species F. cancellatum. Announced in 2019; the final version of the article naming it was published in 2020.
Germanoplatidia[53] Gen. et comb. nov Valid Dulai & Von der Hocht Oligocene (Chattian) Шаблон:Flag A member of Terebratulida belonging to the family Platidiidae; a new genus for "Terebratula" pusilla Philippi (1843).
Gotatrypa vettrensis[44] Sp. nov Valid Baarli Ordovician/Silurian boundary Solvik Шаблон:Flag A member of the family Atrypidae.
Hassanispirifer[54] Gen. et sp. nov Valid Garcia-Alcalde & El Hassani Devonian (Givetian) Taboumakhlouf Шаблон:Flag A member of Spiriferida belonging to the family Xenomartiniidae. The type species is H. africanus.
Holynetes? mzerrebiensis[54] Sp. nov Valid Garcia-Alcalde & El Hassani Devonian (Givetian) Ahrerouch Шаблон:Flag A member of Chonetidina belonging to the family Anopliidae.
Imbriea[55] Nom. nov Valid Reily Devonian Шаблон:Flag A member of Orthotetida belonging to the family Areostrophiidae; a replacement name for Orthopleura Imbrie (1959).
Kafirnigania jorali[56] Sp. nov In press Berrocal-Casero Late Cretaceous (Coniacian) Шаблон:Flag A member of Terebratulida.
Kafirnigania massiliensis[56] Sp. nov In press Berrocal-Casero Late Cretaceous (Coniacian) Шаблон:Flag
Шаблон:Flag
A member of Terebratulida.
Kirkidium canberrense[57] Sp. nov Valid Strusz Silurian (Wenlock) Canberra Шаблон:Flag A member of Pentamerida belonging to the family Pentameridae.
Lambdarina winklerprinsi[58] Sp. nov Valid Voldman et al. Carboniferous (Pennsylvanian) San Emiliano Шаблон:Flag
Levitusia elongata[59] Sp. nov Valid Tazawa Carboniferous (Viséan) Шаблон:Flag A member of Productidina belonging to the family Leioproductidae.
Lingulellotreta yuanshanensis[60] Sp. nov Valid Zhang et al. Cambrian Шаблон:Flag
Linnaeocaninella[61] Nom. nov Valid Hernández Middle Permian Lengwu Шаблон:Flag A replacement name for Caninella Liang (1990)
Linnarssonia sapushanensis[62] Sp. nov Valid Duan et al. Cambrian Stage 4 Wulongqing Шаблон:Flag An acrotretoid brachiopod.
Lithobolus limbatum[46] Sp. nov Valid Lavié & Benedetto Ordovician Suri Шаблон:Flag An obolid brachiopod. Announced in 2019; the final version of the article naming it was published in 2020.
Mishninia[50] Gen. et sp. nov Valid Baranov Early Devonian Шаблон:Flag The type species is M. nodosa
Neobolus wulongqingensis[63] Sp. nov Valid Zhang, Strotz, Topper & Brock in Zhang et al. Cambrian Stage 4 Wulongqing Шаблон:Flag A member of Lingulida belonging to the family Neobolidae. Many specimens had tubeworm-like kleptoparasites attached to their shells.
Neochonetes (Sommeriella) longa[64] Sp. nov Valid Wu et al. Permian (Changhsingian) Luokeng Шаблон:Flag
Neochonetes (Sommeriella) transversa [64] Sp. nov Valid Wu et al. Permian (Changhsingian) Luokeng Шаблон:Flag
Nucleatina anotia[56] Sp. nov In press Berrocal-Casero Late Cretaceous (Coniacian) Шаблон:Flag
Шаблон:Flag?
A member of Terebratulida.
Nucleatina arcana[56] Sp. nov In press Berrocal-Casero Late Cretaceous (Coniacian) Шаблон:Flag A member of Terebratulida.
Nucleatina barrosoi[56] Sp. nov In press Berrocal-Casero Late Cretaceous (Coniacian) Шаблон:Flag A member of Terebratulida.
Orbiculoidea katzeri[65] Sp. nov In press Corrêa & Ramos Devonian (Lochkovian) Manacapuru Шаблон:Flag
Orbiculoidea xinguensis[65] Sp. nov In press Corrêa & Ramos Devonian (Lochkovian) Manacapuru Шаблон:Flag
Palaeotreta[66] Gen. et sp. et comb. nov Valid Zhang et al. Cambrian Series 2 Shuijingtuo Шаблон:Flag A member of the family Acrotretidae. The type species is P. shannanensis; genus also includes "Eohadrotreta" zhujiahensis Li & Holmer (2004).
Paragilledia[67] Gen. et sp. nov Valid Shi, Waterhouse & Lee Early Permian Pebbley Beach Шаблон:Flag A member of Terebratulida belonging to the family Gillediidae. Genus includes new species P. kioloaensis.
Paramickwitzia[68] Gen. et sp. nov Valid Pan et al. Cambrian Series 2 Xinji Шаблон:Flag A stem-brachiopod belonging to the group Mickwitziidae. Genus includes new species P. boreussinaensis. Announced in 2019; the final version of the article naming it was published in 2020.
Plectatrypa rindi[44] Sp. nov Valid Baarli Ordovician/Silurian boundary Solvik Шаблон:Flag A member of the family Atrypinidae.
Plicarmus[69] Gen. et sp. nov Valid Claybourn et al. Cambrian Stage 4 Byrd Group Antarctica A member of Lingulata. Genus includes new species P. wildi.
Pomatotrema laubacheri[41] Sp. nov Valid Colmenar & Hodgin Ordovician Umachiri Шаблон:Flag
Rhinatrypa[44] Gen. et comb. nov Valid Baarli Ordovician/Silurian boundary Solvik Шаблон:Flag A member of the family Atrypidae. The type species is "Plectatrypa" henningsmoeni Boucot & Johnson (1967).
Rhipidium oepiki[57] Sp. nov Valid Strusz Silurian (Wenlock) Canberra Шаблон:Flag A member of Pentamerida belonging to the family Pentameridae.
Spinocarinifera qilinzhaiensis[70] Sp. nov Valid Nie et al. Carboniferous (Tournaisian) Tangbagou Formation Шаблон:Flag
Stringocephalus sinensis[47] Sp. nov Valid Baranov, Qiao & Blodgett Devonian (Givetian) Шаблон:Flag A member of the family Stringocephalidae. Announced in 2020; the final version of the article naming was published in 2021.
Tabellina laseroni[67] Sp. nov Valid Shi, Waterhouse & Lee Early Permian Pebbley Beach Шаблон:Flag An ingelarelloidean brachiopod belonging to the family Notospiriferidae.
Tapuritreta gribovensis[71] Sp. nov Valid Holmer et al. Cambrian (Guzhangian) Karpinsk Formation Шаблон:Flag
(Шаблон:Flag)
A member of the family Acrotretidae.
Tcherskidium tenuicostatus[45] Sp. nov Valid Jin & Blodgett Late Ordovician Шаблон:Flag
(Шаблон:Flag)
Thomasaria bultyncki[54] Sp. nov Valid Garcia-Alcalde & El Hassani Devonian (Givetian) Ahrerouch Шаблон:Flag A member of Spiriferida belonging to the family Thomasariidae.
Vagrania naanchanensis[50] Sp. nov Valid Baranov Early Devonian Шаблон:Flag A member of Atrypida.
Verchojania abramovi[72] Sp. nov Valid Makoshin Late Carboniferous Шаблон:Flag A member of Productida
Wahwahlingula? pankovensis[71] Sp. nov Valid Holmer et al. Cambrian (Guzhangian) Karpinsk Formation Шаблон:Flag
(Шаблон:Flag)
A member of Linguloidea belonging to the family Zhanatellidae.
Woodwardirhynchia pontemdiaboli[48] Sp. nov In press Berrocal Casero, Barroso Barcenilla & Joral Late Cretaceous (Coniacian) Шаблон:Flag A member of Rhynchonellida
Yangirostra[47] Gen. et sp. nov Valid Baranov, Qiao & Blodgett Devonian (Givetian) Шаблон:Flag A member of the family Stringocephalidae. Genus includes new species Y. asiatica. Announced in 2020; the final version of the article naming was published in 2021.

Research

  • A study on the mode of life of Paleozoic strophomenatans is published by Stanley (2020), who argues that nearly all strophomenatans lived infaunally.[73]
  • A study on the paleobiogeography of Early−Middle Devonian (Pragian−Eifelian) brachiopods from West Gondwana, aiming to determine any potential controls that may have driven bioregionalization, is published by Penn-Clarke & Harper (2020).[74]
  • A study on the phylogenetic relationships and ecomorphologic diversification of Mesozoic spiriferinids is published by Guo, Chen & Harper (2020).[75]

Molluscs

Шаблон:Main

Echinoderms

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images
Abertella carlsoni[76] Sp. nov Valid Osborn, Portell & Mooi Miocene Шаблон:Flag
(Шаблон:Flag)
A sea urchin.
Abludoglyptocrinus steinheimerae[77] Sp. nov Valid Cole et al. Ordovician (Katian) Brechin Lagerstätte
Bobcaygeon & Verulam
Шаблон:Flag
(Шаблон:Flag)
A monobathrid crinoid.
Aenigmaticumcrinus[78] Gen. et sp. nov Valid Scheffler Devonian Belén Шаблон:Flag A crinoid belonging to the group Dimerocrinitacea. Genus includes new species A. rochacamposi.
Aerliceaster[79] Gen. et sp. nov Valid Blake, Gahn & Guensburg Ordovician (Floian) Garden City Шаблон:Flag
(Шаблон:Flag)
A starfish. Genus includes new species A. nexosus.
Alkaidia megaungula[80] Sp. nov Valid Ewin & Gale Early Cretaceous (Barremian) Taba Шаблон:Flag A starfish belonging to the family Terminasteridae.
Arceoaster[81] Gen. et sp. nov Valid Blake & Sprinkle Silurian Hunton Group Шаблон:Flag
(Шаблон:Flag)
A starfish belonging to the family Hudsonasteridae. Genus includes new species A. hintei.
Aszulcicrinus[82] Gen. et sp. nov Valid Hagdorn Middle Triassic (Anisian) Gogolin Шаблон:Flag A crinoid belonging to the group Articulata and the family Dadocrinidae. The type species is A. pentebrachiatus.
Brissopsis hoffmani[76] Sp. nov Valid Osborn, Portell & Mooi Miocene Шаблон:Flag
(Шаблон:Flag)
A sea urchin.
Bronthaster[83] Gen. et sp. nov In press Jell & Cook Carboniferous (Namurian) Yagon Siltstone Шаблон:Flag A brittle star belonging to the family Protasteridae. Genus includes new species B. retus.
Calclyra bifida[84] Sp. nov Valid Pabst & Herbig Carboniferous (Serpukhovian) Genicera Шаблон:Flag A brittle star belonging to the group Oegophiurida and the family Calclyridae.
Clypeaster petersonorum[76] Sp. nov Valid Osborn, Portell & Mooi Miocene Шаблон:Flag
(Шаблон:Flag)
A species of Clypeaster.
Comptonia bretoni[85] Sp. nov Valid Gale Early Cretaceous (Aptian) Atherfield Шаблон:Flag A starfish
Coulonia caseyi[85] Sp. nov Valid Gale Early Cretaceous (Aptian) Atherfield Шаблон:Flag An astropectinid starfish
Cyclogrupera[86] Gen. et sp. nov Torres-Martínez, Villanueva-Olea & Sour-Tovar Permian (AsselianSakmarian) Grupera Шаблон:Flag A crinoid belonging to the family Cyclomischidae. The type species is C. minor.
Discocrinus africanus[87] Sp. nov Valid Gale Late Cretaceous (Cenomanian) Aït Lamine Шаблон:Flag A crinoid belonging to the group Articulata and the family Roveacrinidae.
Discometra luberonensis[88] Sp. nov Valid Eléaume, Roux & Philippe Miocene (Burdigalian) Шаблон:Flag A feather star belonging to the family Himerometridae.
Drepanocrinus wardorum[87] Sp. nov Valid Gale Late Cretaceous (Cenomanian)

Шаблон:Flag
Шаблон:Flag

A crinoid belonging to the group Articulata and the family Roveacrinidae
Durhamicystis[89] Gen. et sp. nov Valid Zamora, Sprinkle & Sumrall Ordovician (Sandbian) Chambersburg Шаблон:Flag
(Шаблон:Flag)
A member of Eocrinoidea belonging to the family Rhipidocystidae. The type species is D. americana.
Encrinaster alsbachensis[90] Sp. nov Valid Müller & Hahn Early Devonian Шаблон:Flag A brittle star.
Enodicalix[91] Gen. et comb. nov Valid Paul & Gutiérrez-Marco Ordovician Шаблон:Flag A member of Diploporita belonging to the family Aristocystitidae. The type species is "Calix" inornatus Meléndez (1958).
Eoastropecten[92] Gen. et sp. nov Valid Gale Late Triassic (Carnian) Шаблон:Flag A starfish belonging to the family Astropectinidae. Genus includes new species E. sechuanensis.
Euglyphocrinus cristagalli[87] Sp. nov Valid Gale Early Cretaceous (Albian)

Шаблон:Flag
Шаблон:Flag
(Шаблон:Flag)

A crinoid belonging to the group Articulata and the family Roveacrinidae
Euglyphocrinus jacobsae[87] Sp. nov Valid Gale Late Cretaceous (Cenomanian)

Шаблон:Flag
Шаблон:Flag

A crinoid belonging to the group Articulata and the family Roveacrinidae
Euglyphocrinus truncatus[87] Sp. nov Valid Gale Late Cretaceous (Cenomanian)

Шаблон:Flag
Шаблон:Flag

A crinoid belonging to the group Articulata and the family Roveacrinidae
Euglyphocrinus worthensis[87] Sp. nov Valid Gale Early Cretaceous (Albian)

Шаблон:Flag
Шаблон:Flag
(Шаблон:Flag)

A crinoid belonging to the group Articulata and the family Roveacrinidae
Euptychocrinus longipinnulus[93] Sp. nov Valid Fearnhead et al. Silurian (Telychian) Pysgotwr Grits Шаблон:Flag A camerate crinoid
Eutaxocrinus ariunai[94] Sp. nov Valid Waters et al. Devonian (Famennian) Samnuuruul Formation Шаблон:Flag A crinoid. Announced in 2020; the final version of the article naming was published in 2021.
Eutaxocrinus sersmaai[94] Sp. nov Valid Waters et al. Devonian (Famennian) Samnuuruul Formation Шаблон:Flag A crinoid. Announced in 2020; the final version of the article naming was published in 2021.
Fenestracrinus[87] Gen. et sp. nov Valid Gale Late Cretaceous (Cenomanian) Aït Lamine Шаблон:Flag A crinoid belonging to the group Articulata and the family Roveacrinidae. The type species is F. oculifer.
Fernandezaster whisleri[76] Sp. nov Valid Osborn, Portell & Mooi Pliocene Шаблон:Flag
(Шаблон:Flag)
A sea urchin.
Floricyclocion[86] Gen. et sp. nov Torres-Martínez, Villanueva-Olea & Sour-Tovar Permian (Asselian‒Sakmarian) Grupera Шаблон:Flag A crinoid belonging to the family Floricyclidae. The type species is F. heteromorpha.
Gagaria hunterae[76] Sp. nov Valid Osborn, Portell & Mooi Miocene Шаблон:Flag
(Шаблон:Flag)
A sea urchin.
Genocidaris oyeni[76] Sp. nov Valid Osborn, Portell & Mooi Pliocene Шаблон:Flag
(Шаблон:Flag)
A sea urchin.
Heterobrissus lubellii[95] Sp. nov Valid Borghi & Stara Late Oligocene-early Miocene Шаблон:Flag A heart urchin.
Holocrinus qingyanensis[96] Sp. nov Valid Stiller Middle Triassic (Anisian) Шаблон:Flag A crinoid belonging to the family Holocrinidae. Announced in 2019; the final version of the article naming it was published in 2020.
Isocrinus (Chladocrinus) covuncoensis[97] Sp. nov Valid Lazo et al. Early Cretaceous (Valanginian) Agrio Шаблон:Flag A crinoid.
Isocrinus (Chladocrinus) pehuenchensis[97] Sp. nov Valid Lazo et al. Early Cretaceous (Hauterivian) Agrio Шаблон:Flag A crinoid.
Kolataster[79] Gen. et sp. nov Valid Blake, Gahn & Guensburg Ordovician (Sandian) Mifflin Шаблон:Flag
(Шаблон:Flag)
A starfish. Genus includes new species K. perplexus.
Lebenharticrinus quinvigintensis[87] Sp. nov Valid Gale Late Cretaceous (Cenomanian) Aït Lamine Шаблон:Flag A crinoid belonging to the group Articulata and the family Roveacrinidae
Lebenharticrinus zitti[87] Sp. nov Valid Gale Late Cretaceous (Cenomanian) Aït Lamine Шаблон:Flag A crinoid belonging to the group Articulata and the family Roveacrinidae
Linguaserra heidii[84] Sp. nov Valid Pabst & Herbig Carboniferous (Tournaisian to Serpukhovian) Genicera
Heiligenhaus
Шаблон:Flag
Шаблон:Flag
A member of Ophiocistioidea belonging to the family Linguaserridae.
Lovenia kerneri[76] Sp. nov Valid Osborn, Portell & Mooi Pliocene Шаблон:Flag
(Шаблон:Flag)
A species of Lovenia.
Maestratina[98] Gen. et comb. nov Valid Forner i Valls & Saura Vilar Early Cretaceous (Aptian) Forcall Formation Шаблон:Flag A sea urchin belonging to the group Arbacioida and the family Arbaciidae. The type species is "Cotteaudia" royoi Lambert (1928).
Magnasterella[99] Gen. et comb. nov In press Fraga & Vega Devonian (Frasnian) Ponta Grossa Шаблон:Flag A starfish belonging to the group Euaxosida; a new genus for "Echinasterella" darwini Clarke (1913).
Marginix notatus[99] Sp. nov In press Fraga & Vega Devonian (Frasnian) Ponta Grossa Шаблон:Flag A brittle star
Meperocrinus[78] Gen. et sp. nov Valid Scheffler Devonian Icla Шаблон:Flag A crinoid belonging to the family Emperocrinidae. Genus includes new species M. angelina.
Mongoliacrinus[94] Gen. et sp. nov Valid Waters et al. Devonian (Famennian) Samnuuruul Formation Шаблон:Flag A crinoid belonging to the family Acrocrinidae. Genus includes new species M. minjini. Announced in 2020; the final version of the article naming was published in 2021.
Odontaster tabaensis[80] Sp. nov Valid Ewin & Gale Early Cretaceous (Barremian) Taba Шаблон:Flag A starfish, a species of Odontaster.
Ophiacantha oceani[100] Sp. nov Valid Numberger-Thuy & Thuy Pliocene to Pleistocene (Piacenzian to Gelasian) Шаблон:Flag A brittle star belonging to the family Ophiacanthidae.
Ophiomitrella floorae[101] Sp. nov Valid Thuy, Numberger-Thuy & Gale Late Cretaceous (Maastrichtian) Maastricht Шаблон:Flag An ophiacanthid brittle star.
Paragonaster felli[102] Sp. nov Valid Stevens Early Cretaceous Шаблон:Flag A starfish.
Paranaster[99] Gen. et comb. nov In press Fraga & Vega Devonian (Emsian) Ponta Grossa Шаблон:Flag A starfish belonging to the group Euaxosida. Genus includes new species P. crucis.
Pararchaeocrinus kiddi[77] Sp. nov Valid Cole et al. Ordovician (Katian) Brechin Lagerstätte
Bobcaygeon & Verulam
Шаблон:Flag
(Шаблон:Flag)
A diplobathrid crinoid.
Peckicrinus[103] Gen. et comb. nov Valid Gale in Gale et al. Early Cretaceous (Albian) Duck Creek Шаблон:Flag
(Шаблон:Flag
Шаблон:Flag)
A crinoid belonging to the family Roveacrinidae. The type species is "Poecilocrinus" porcatus Peck (1943). Announced in 2020; the final version of the article naming it was published in 2021.
Pegoasterella[104] Gen. et sp. nov Valid Blake & Koniecki Late Ordovician Bromide
Guttenberg
Шаблон:Flag
(Шаблон:Flag
Шаблон:Flag)
A starfish belonging to the family Urasterellidae. Genus includes new species P. pompom.
Periglyptocrinus astricus[77] Sp. nov Valid Cole et al. Ordovician (Katian) Brechin Lagerstätte
Bobcaygeon & Verulam
Шаблон:Flag
(Шаблон:Flag)
A monobathrid crinoid.
Periglyptocrinus kevinbretti[77] Sp. nov Valid Cole et al. Ordovician (Katian) Brechin Lagerstätte
Bobcaygeon & Verulam
Шаблон:Flag
(Шаблон:Flag)
A monobathrid crinoid.
Periglyptocrinus mcdonaldi[77] Sp. nov Valid Cole et al. Ordovician (Katian) Brechin Lagerstätte
Bobcaygeon & Verulam
Шаблон:Flag
(Шаблон:Flag)
A monobathrid crinoid.
Periglyptocrinus silvosus[77] Sp. nov Valid Cole et al. Ordovician (Katian) Brechin Lagerstätte
Bobcaygeon & Verulam
Шаблон:Flag
(Шаблон:Flag)
A monobathrid crinoid.
Plotocrinus molineuxae[103] Sp. nov Valid Gale in Gale et al. Early Cretaceous (Albian) Goodland Шаблон:Flag
(Шаблон:Flag)
A crinoid belonging to the family Roveacrinidae. Announced in 2020; the final version of the article naming it was published in 2021.
Plotocrinus rashallae[103] Sp. nov Valid Gale in Gale et al. Early Cretaceous (Albian) Goodland Шаблон:Flag
Шаблон:Flag
(Шаблон:Flag)
A crinoid belonging to the family Roveacrinidae. Announced in 2020; the final version of the article naming it was published in 2021.
Plotocrinus reidi[103] Sp. nov Valid Gale in Gale et al. Early Cretaceous (Albian) Kiamichi Шаблон:Flag
(Шаблон:Flag)
A crinoid belonging to the family Roveacrinidae. Announced in 2020; the final version of the article naming it was published in 2021.
Psammaster[105] Gen. et comb. nov Valid Fau et al. Late Jurassic (Tithonian) Grès des Oies Шаблон:Flag A starfish belonging to the group Forcipulatida. The type species is "Ophidiaster" davidsoni de Loriol & Pellat (1874).
Rhyncholampas meansi[76] Sp. nov Valid Osborn, Portell & Mooi Pleistocene Шаблон:Flag
(Шаблон:Flag)
A sea urchin.
Roveacrinus gladius[87] Sp. nov Valid Gale Late Cretaceous (Cenomanian)

Шаблон:Flag
Шаблон:Flag

A crinoid belonging to the group Articulata and the family Roveacrinidae
Roveacrinus morganae[103] Sp. nov Valid Gale in Gale et al. Early Cretaceous (Albian) Pawpaw Шаблон:Flag
(Шаблон:Flag)
A crinoid belonging to the family Roveacrinidae. Announced in 2020; the final version of the article naming it was published in 2021.
Roveacrinus proteus[103] Sp. nov Valid Gale in Gale et al. Early Cretaceous (Albian) Pawpaw Шаблон:Flag
(Шаблон:Flag)
A crinoid belonging to the family Roveacrinidae. Announced in 2020; the final version of the article naming it was published in 2021.
Roveacrinus solisoccasum[87] Sp. nov Valid Gale Early Cretaceous (Albian)

Шаблон:Flag
Шаблон:Flag
(Шаблон:Flag)

A crinoid belonging to the group Articulata and the family Roveacrinidae
Schoenaster carterensis[106] Sp. nov Valid Harris, Ettensohn & Carnahan-Jarvis Carboniferous (Chesterian) Slade Шаблон:Flag
(Шаблон:Flag)
A brittle star
Seifenia[107] Gen. et sp. nov Valid Müller & Hahn Early Devonian Seifen Шаблон:Flag A member of Edrioasteroidea. The type species is S. ostara.
Spiracarneyella[108] Gen. et sp. nov Valid Sumrall & Phelps Ordovician (Katian) Point Pleasant Шаблон:Flag
(Шаблон:Flag
Шаблон:Flag)
A carneyellid edrioasteroid. Genus includes new species S. florencei.
Streptoiocrinus[109] Gen. nov Valid Rozhnov Ordovician Шаблон:Flag
Шаблон:Flag
(Шаблон:Flag)
A crinoid belonging to the group Disparida.
Styracocrinus rimafera[87] Sp. nov Valid Gale Late Cretaceous (Cenomanian)

Шаблон:Flag
Шаблон:Flag

A crinoid belonging to the group Articulata and the family Roveacrinidae
Styracocrinus thomasae[103] Sp. nov Valid Gale in Gale et al. Early Cretaceous (Albian) Goodland Шаблон:Flag
(Шаблон:Flag)
A crinoid belonging to the family Roveacrinidae. Announced in 2020; the final version of the article naming it was published in 2021.
Tallinnicrinus[110] Gen. et sp. nov Valid Cole, Ausich & Wilson Ordovician (Hirnantian) Шаблон:Flag An anthracocrinid diplobathrid crinoid. Genus includes new species T. toomae.
Tollmannicrinus leidapoensis[96] Sp. nov Valid Stiller Middle Triassic (Anisian) Шаблон:Flag A crinoid. Announced in 2019; the final version of the article naming it was published in 2020.
Tuberocrinus[78] Gen. et sp. nov Valid Scheffler Devonian Belén Шаблон:Flag A crinoid belonging to the group Dimerocrinitacea. Genus includes new species T. lapazensis.
Vaquerosella perrillatae[111] Sp. nov Valid Martínez Melo & Alvarado Ortega Miocene San Ignacio Шаблон:Flag A sand dollar belonging to the family Echinarachniidae

Research

  • A study on morphological diversification of echinoderms and evolutionary mechanisms underlying the establishment of echinoderm body plans during the early Paleozoic is published by Deline et al. (2020).[112]
  • A study on the locomotion of cornute stylophorans, based on data from a specimen of Phyllocystis crassimarginata from the Ordovician (Tremadocian) Saint-Chinian Formation (France), is published by Clark et al. (2020).[113]
  • A study on the speciation and dispersal of the diploporan blastozoans through the Ordovician period is published by Lam, Sheffield & Matzke (2020).[114]
  • A study on the evolutionary history of eublastoid blastozoans is published by Bauer (2020).[115]
  • A study on the anatomy and phylogenetic relationships of Eumorphocystis is published by Guensburg et al. (2020), who consider this taxon to be a blastozoan far removed from crinoids, contrary to the results of the study of Sheffield & Sumrall (2019).[116][117]
  • A study on the phylogeny of the crown group of Echinoidea, based on both phylogenomic and paleontological data, is published by Koch & Thompson (2020).[118]
  • A study on the structure of the arms and on probable locomotion strategies of Devonian brittle stars from the Hunsrück Slate (Germany) is published by Clark, Hutchinson & Briggs (2020).[119]

Conodonts

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images
Ancyrognathus minjini[120] Sp. nov Valid Suttner et al. Late Devonian Baruunhuurai Шаблон:Flag Announced in 2019; the final version of the article naming it was published in 2020.
Baltoniodus norrlandicus denticulatus[121] Subsp. nov Valid Dzik Ordovician (Darriwilian) Шаблон:Flag Announced in 2019; the final version of the article naming it was published in 2020.
Belodina watsoni[122] Sp. nov Valid Zhen Ordovician (Darriwilian) Шаблон:Flag
Bipennatus hemilevigatus[123] Sp. nov Valid Lu & Königshof Devonian (Eifelian) Beiliu Шаблон:Flag Announced in 2019; the final version of the article naming it was published in 2020.
Bipennatus planus[123] Sp. nov Valid Lu & Königshof Devonian (Eifelian) Beiliu Шаблон:Flag Announced in 2019; the final version of the article naming it was published in 2020.
Diplognathodus benderi[124] Sp. nov Valid Hu et al. Carboniferous (BashkirianMoscovian boundary) Шаблон:Flag
Erraticodon neopatu[125] Sp. nov Valid Zhen in Zhen et al. Ordovician Willara Шаблон:Flag Announced in 2020; the final version of the article naming it was published in 2021.
Gladigondolella laii[126] Sp. nov In press Chen in Chen et al. Early Triassic Шаблон:Flag
Idiognathodus fengtingensis[127] Sp. nov Valid Qi et al. Carboniferous (KasimovianGzhelian boundary) Шаблон:Flag
Idiognathodus luodianensis[127] Sp. nov Valid Qi et al. Carboniferous (Kasimovian–Gzhelian boundary) Шаблон:Flag
Idiognathodus naqingensis[127] Sp. nov Valid Qi et al. Carboniferous (Kasimovian–Gzhelian boundary) Шаблон:Flag
Idiognathodus naraoensis[127] Sp. nov Valid Qi et al. Carboniferous (Kasimovian–Gzhelian boundary) Шаблон:Flag
Latericriodus guangnanensis[128] Sp. nov In press Lu & Valenzuela-Ríos in Lu et al. Devonian (Emsian) Daliantang Шаблон:Flag A member of Prioniodontida belonging to the family Icriodontidae.
Misikella kolarae[129] Sp. nov Valid Karádi et al. Late Triassic Шаблон:Flag Announced in 2019; the final version of the article naming it was published in 2020.
Pachycladina rendona[130] Sp. nov In press Wu & Ji in Wu et al. Early Triassic Шаблон:Flag An ellisonid conodont.
Palmatolepis subperlobata tatarica[131] Nom. nov Valid Ovnatanova & Gatovsky Devonian (Famennian) Prikazanskaya Formation Шаблон:Flag
(Шаблон:Flag)
A replacement name for Palmatolepis subperlobata helmsi Ovnatanova (1976). The subspecies was subsequently raised to the rank of a separate species by Ovnatanova & Kononova (2023).[132]
Paullella omanensis[126] Sp. nov In press Chen in Chen et al. Early Triassic Шаблон:Flag
Шаблон:Flag
Polygnathus nalaiensis[123] Sp. nov Valid Lu & Königshof Devonian (Eifelian) Beiliu Шаблон:Flag Announced in 2019; the final version of the article naming it was published in 2020.
Rossodus? boothiaensis[133] Sp. nov Valid Zhang Turner Cliffs Шаблон:Flag
(Шаблон:Flag)
Scalpellodus percivali[122] Sp. nov Valid Zhen Ordovician (Darriwilian) Шаблон:Flag
Scythogondolella dolosa[134] Sp. nov Valid Bondarenko & Popov Early Triassic Шаблон:Flag
(Шаблон:Flag)
Siphonodella leiosa[135] Sp. nov In press Souquet, Corradini & Girard Carboniferous (Tournaisian) Шаблон:Flag
Streptognathodus nemyrovskae[127] Sp. nov Valid Qi et al. Carboniferous (Gzhelian) Шаблон:Flag
Streptognathodus zhihaoi[127] Sp. nov Valid Qi et al. Carboniferous (Gzhelian) Шаблон:Flag
Tortodus dodoensis[136] Sp. nov Valid Gouwy, Uyeno & McCracken Devonian (Givetian) Шаблон:Flag Announced in 2019; the final version of the article naming it was published in 2020.
Trapezognathus pectinatus[121] Sp. nov Valid Dzik Ordovician (Darriwilian) Шаблон:Flag Announced in 2019; the final version of the article naming it was published in 2020.
Zieglerodina petrea[137] Sp. nov Valid Hušková & Slavík Silurian/Devonian boundary Prague Synform Шаблон:Flag Announced in 2019; the final version of the article naming it was published in 2020.

Research

Fishes

Шаблон:Main

Amphibians

Шаблон:Main

Reptiles

Шаблон:Main

Synapsids

Non-mammalian synapsids

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images
Agudotherium[140] Gen. et sp. nov Valid Stefanello et al. Late Triassic Candelária Шаблон:Flag A non-mammaliaform prozostrodontian cynodont. Genus includes new species A. gassenae.
Bohemiclavulus[141] Gen. et comb. nov Valid Spindler, Voigt & Fischer Carboniferous (Gzhelian) Slaný Шаблон:Flag A member of the family Edaphosauridae; a new genus for "Naosaurus" mirabilis Fritsch (1895). Announced in 2019; the final version of the article naming it was published in 2020.

Файл:Bohemiclavulus.jpg

Caodeyao[142] Gen. et sp. nov Valid Liu & Abdala Late Permian Naobaogou Шаблон:Flag A therocephalian. Genus includes new species C. liuyufengi. Файл:Caodeyao skull in lateral view.png
Chiniquodon omaruruensis[143] Sp. nov Valid Mocke, Gaetano & Abdala Triassic Omingonde Шаблон:Flag
Dendromaia[144] Gen. et sp. nov Valid Maddin, Mann & Hebert Carboniferous Шаблон:Flag
(Шаблон:Flag)
A member of Varanopidae. Genus includes new species D. unamakiensis. Announced in 2019; the final version of the article naming it was published in 2020.
Etjoia[145] Gen. et sp. nov Valid Hendrickx et al. Triassic (Ladinian/Carnian) Omingonde Шаблон:Flag A traversodontid cynodont. Genus includes new species E. dentitransitus. Файл:Etjoia all views.jpg
Hypselohaptodus[146] Gen. et comb. nov Valid Spindler Permian (Cisuralian) Kenilworth Шаблон:Flag An early member of Sphenacodontia; a new genus for "Haptodus" grandis. Announced in 2019; the final version of the article naming it was published in 2020.
Inditherium[147] Gen. et sp. nov Valid Bhat, Ray & Datta Late Triassic Tiki Шаблон:Flag A dromatheriid cynodont. Genus includes new species I. floris.
Kalaallitkigun[148] Gen. et sp. nov Valid Sulej et al. Late Triassic (Norian) Fleming Fjord Шаблон:Flag An early member of Mammaliaformes, possibly a member of Haramiyida. Genus includes new species K. jenkinsi.
Kataigidodon[149] Gen. et sp. nov Valid Kligman et al. Late Triassic Chinle Шаблон:Flag
(Шаблон:Flag)
A non-mammalian eucynodont. Genus includes new species K. venetus.
Kenomagnathus[150] Gen. et sp. nov Valid Spindler Carboniferous (late Pennsylvanian) Rock Lake Shale Mb, Stanton Шаблон:Flag
(Шаблон:Flag)
An early member of Sphenacodontia. The type species is K. scottae.

Файл:Kenomagnathus DB.jpg

Martensius[151] Gen. et sp. nov Valid Berman et al. Permian (Artinskian) Tambach Шаблон:Flag A member of Caseidae. The type species is M. bromackerensis.
Nshimbodon[152] Gen. et sp. nov Valid Huttenlocker & Sidor Late Permian Madumabisa Mudstone Шаблон:Flag A basal cynodont, probably a member of the family Charassognathidae. Genus includes new species N. muchingaensis.
Polonodon[153] Gen. et sp. nov Valid Sulej et al. Late Triassic (Carnian) Шаблон:Flag A non-mammaliaform eucynodont. Genus includes new species P. woznikiensis. Announced in 2018; the final version of the article naming it was published in 2020.
Remigiomontanus[141] Gen. et sp. nov Valid Spindler, Voigt & Fischer CarboniferousPermian transition Saar–Nahe Шаблон:Flag A member of the family Edaphosauridae. Genus includes new species R. robustus. Announced in 2019; the final version of the article naming it was published in 2020.
Rewaconodon indicus[147] Sp. nov Valid Bhat, Ray & Datta Late Triassic Tiki Шаблон:Flag A dromatheriid cynodont.
Taoheodon[154] Gen. et sp. nov Valid Liu Late Permian Sunjiagou Formation Шаблон:Flag A dicynodontoid dicynodont. Genus includes new species T. baizhijuni.
Theroteinus jenkinsi[155] Sp. nov Valid Whiteside & Duffin Late Triassic (Rhaetian) Шаблон:Flag A haramiyidan mammaliaform. Announced in 2020; the final version of the article naming it was published in 2021.
Tikiodon[147] Gen. et sp. nov Valid Bhat, Ray & Datta Late Triassic Tiki Шаблон:Flag A mammaliamorph cynodont. Genus includes new species T. cromptoni.

Research

  • A study on the evolution of the well-defined morphological regions of the vertebral column and of vertebral functional diversity in synapsids is published by Jones et al. (2020).[156]
  • A study aiming to determine the resting metabolic rates and the thermometabolic regimes (endothermy or ectothermy) in eight non-mammalian synapsids is published by Faure-Brac & Cubo (2020).[157]
  • A study on the shoulder musculature in extant Argentine black and white tegu and Virginia opossum, evaluating its implications for reconstructions of the shoulder musculature in non-mammalian synapsids, is published by Fahn-Lai, Biewener & Pierce (2020).[158]
  • A study aiming to determine whether a vicariance pattern can explain early synapsid evolution is published by Brikiatis (2020).[159]
  • Mann et al. (2020) reinterpret Carboniferous taxon Asaphestera platyris Steen (1934) from the Joggins locality (Nova Scotia, Canada) as the earliest unambiguous synapsid in the fossil record reported so far.[160]
  • A study on the long bone histology of varanopids from the lower Permian Richards Spur locality (Oklahoma, United States), evaluating its implications for the knowledge of the paleobiology of early synapsids, is published by Huttenlocker & Shelton (2020).[161]
  • Mann & Reisz (2020) report a new hyper-elongated neural spine of Echinerpeton intermedium from the Pennsylvanian-aged Sydney Mines Formation (Nova Scotia, Canada), indicating a wider distribution of hyper-elongation of vertebral neural spines in early synapsids than previously known.[162]
  • A study on the histology of vertebral centra of Edaphosaurus and Dimetrodon is published by Agliano, Sander & Wintrich (2020).[163]
  • A study on the anatomy of the holotype skull of Tetraceratops insignis and on the phylogenetic relationships of this taxon is published by Spindler (2020).[164]
  • A study comparing the oxygen and carbon stable isotope compositions of tooth and bone apatite of Endothiodon and Tropidostoma, and aiming to determine the ecology and diet of Endothiodon, is published by Rey et al. (2020).[165]
  • Whitney & Sidor (2020) compare the frequency and patterns of growth marks in tusks of Lystrosaurus from polar Antarctica and from the non-polar Karoo Basin of South Africa living ~250 Mya, and report evidence of prolonged stress interpreted as indicative of torpor in polar specimens. This could be the oldest evidence of a hibernation-like state in a vertebrate animal and indicates that torpor arose in vertebrates before mammals and dinosaurs evolved.[166][167][168]
  • A study on the skull length and growth patterns of the four South African Lystrosaurus species (L. maccaigi, L. curvatus, L. murrayi and L. declivis), aiming to determine whether the end-Permian mass extinction caused the Lilliput effect in Lystrosaurus species from the Karoo Basin and to infer their lifestyle, is published by Botha (2020).[169]
  • A study aiming to examine the basis for claims that the genus Lystrosaurus is a disaster taxon is published by Modesto (2020).[170]
  • A study on tooth serrations in a Permian gorgonopsian from Zambia, identifying the occurrence of denticles and interdental folds forming the cutting edges in the teeth which were previously thought to be unique to theropod dinosaurs and some other archosaurs, is published by Whitney et al. (2020).[171]
  • Redescription of the skull of Lycosuchus vanderrieti, providing new information on the endocranial anatomy of this taxon, is published by Pusch et al. (2020).[172]
  • A review of the fossil record of Triassic non-mammaliaform cynodonts from western Gondwana and its importance for the knowledge of the origin of mammals, focusing on taxa known from Argentina, is published by Abdala et al. (2020).[173]
  • A study on the tooth replacement in Galesaurus planiceps is published by Norton et al. (2020).[174]
  • The third specimen of Prozostrodon brasiliensis, providing novel information on the anatomy of this taxon, is described by Kerber et al. (2020).[175]

Mammals

Шаблон:Main

Other animals

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images
Aladraco kirchhainensis[176] Sp. nov Valid Geyer & Malinky Cambrian (Miaolingian) Delitzsch–Torgau–Doberlug Шаблон:Flag A member of Hyolitha. Announced in 2019; the final version of the article naming it was published in 2020.
Armilimax[177] Gen. et sp. nov Valid Kimmig & Selden Cambrian (Wuliuan) Spence Shale Шаблон:Flag
(Шаблон:Flag)
A shell-bearing animal of uncertain phylogenetic placement. Genus includes new species A. pauljamisoni. Announced in 2020; the final version of the article naming it was published in 2021.
Avitograptus akidomorphus[178] Sp. nov Valid Muir et al. Ordovician (Hirnantian) Wenchang Шаблон:Flag A graptolite.
Bizeticyathus[179] Gen. et comb. nov Valid Kruse & Debrenne Cambrian Шаблон:Flag A member of Archaeocyatha. Genus includes B. carmen (Carmen & Carmen, 1937).
Canadiella[180] Gen. et comb. nov Valid Skovsted et al. Cambrian Mural
Rosella
Шаблон:Flag A tommotiid belonging to the family Kennardiidae. The type species is "Lapworthella" filigrana Conway Morris & Fritz (1984).
Collinsovermis[181] Gen. et sp. nov Valid Caron & Aria Cambrian (Wuliuan) Burgess Shale Шаблон:Flag
(Шаблон:Flag)
A luolishaniid lobopodian. Genus includes new species C. monstruosus. Файл:20210918 Collinsovermis monstruosus diagrammatic reconstruction.png
Cordaticaris[182] Gen. et sp. nov In press Sun, Zeng & Zhao Cambrian (Drumian) Zhangxia Шаблон:Flag A member of Radiodonta belonging to the family Hurdiidae. Genus includes new species C. striatus. Файл:20210516 Radiodonta head sclerites Cordaticaris striatus.png
Cornulites baranovi[183] Sp. nov Valid Vinn & Toom Silurian (Přidoli) Ohesaare Шаблон:Flag A member of Cornulitida.
Dahescolex[184] Gen. et sp. nov Valid Shao et al. Cambrian (Fortunian) Kuanchuanpu Шаблон:Flag An animal which might be a stem-lineage derivative of Scalidophora. Genus includes new species D. kuanchuanpuensis. Announced in 2019; the final version of the article naming it was published in 2020.
Dakorhachis[185] Gen. et sp. nov Valid Conway Morris et al. Cambrian (Guzhangian) Weeks Шаблон:Flag
(Шаблон:Flag)
An animal of uncertain phylogenetic placement, possibly a stem-group member of the Gnathifera. Genus includes new species D. thambus.
Dannychaeta[186] Gen. et sp. nov Valid Chen et al. Early Cambrian Canglangpu Шаблон:Flag A crown annelid, probably a relative of the families Magelonidae and Oweniidae. Genus includes new species D. tucolus.
Degeletticyathus dailyi[179] Sp. nov Valid Kruse & Debrenne Cambrian Шаблон:Flag A member of Archaeocyatha.
"Dictyonema" khadijae[187] Sp. nov In press Gutiérrez Marco, Muir & Mitchell Late Ordovician Шаблон:Flag A graptolite
"Dictyonema" villasi[187] Sp. nov In press Gutiérrez Marco, Muir & Mitchell Late Ordovician Шаблон:Flag A graptolite
Gyaltsenglossus[188] Gen. et sp. nov Valid Nanglu, Caron & Cameron Cambrian Stephen Шаблон:Flag
(Шаблон:Flag)
A member of the stem group of Hemichordata. The type species is G. senis.
Herpetogaster haiyanensis[189] Sp. nov Yang et al. Cambrian Stage 3 Chiungchussu Шаблон:Flag
Hillaecyathus[179] Gen. et comb. nov Valid Kruse & Debrenne Cambrian Шаблон:Flag A member of Archaeocyatha. Genus includes H. contractus (Hill, 1965).
Ikaria[190] Gen. et sp. nov Valid Evans et al. Ediacaran Шаблон:Flag An early bilaterian. Genus includes new species I. wariootia. Файл:Ikaria wariootia (cropped).jpg
Korenograptus selectus[191] Sp. nov In press Chen in Chen et al. Late Ordovician Шаблон:Flag A graptolite
Kylinxia[192] Gen. et sp. nov Valid Zeng, Zhao & Huang in Zeng et al. Early Cambrian Шаблон:Flag A transitional euarthropod that bridges radiodonts and true arthropods. Genus includes new species K. zhangi. Файл:20210310 Kylinxia zhangi.png
Lenzograptus[193] Nom. nov In press Loydell Silurian (Ludlow) Шаблон:Flag
(Шаблон:Flag)
A graptolite; a replacement name for Lenzia Rickards & Wright (1999).
Longxiantheca[194] Gen. et sp. nov Valid Li in Li et al. Cambrian Stages 34 Xinji Шаблон:Flag A member of Hyolitha belonging to the group Orthothecida. The type species is L. mira.
Maxdebrennius[179] Gen. et sp. nov Valid Kruse & Debrenne Cambrian Шаблон:Flag A member of Archaeocyatha. Genus includes new species M. mimus.
Microconchus cravenensis[195] Sp. nov Valid Zatoń & Mundy Carboniferous (Mississippian) Cracoe Limestone
Malham
Шаблон:Flag A member of Microconchida.
Microconchus maya[196] Sp. nov Valid Heredia-Jiménez et al. Permian (Roadian) Paso Hondo Шаблон:Flag A member of Microconchida.
Monograptus hamulus[197] Sp. nov Valid Saparin et al. Silurian (Llandovery) Co To Шаблон:Flag A graptolite
Neodiplograptus mandalayensis[191] Sp. nov In press Chen in Chen et al. Late Ordovician Шаблон:Flag A graptolite
Nochoroicyathus ordinarius[179] Sp. nov Valid Kruse & Debrenne Cambrian Шаблон:Flag A member of Archaeocyatha.
Nochoroicyathus sublimus[179] Sp. nov Valid Kruse & Debrenne Cambrian Шаблон:Flag A member of Archaeocyatha.
Paranacyathus arboreus[179] Sp. nov Valid Kruse & Debrenne Cambrian Шаблон:Flag A member of Archaeocyatha.
Pontagrossia[198] Gen. et sp. nov Valid Chahud & Fairchild Devonian (Emsian) Ponta Grossa Шаблон:Flag An invertebrate of uncertain phylogenetic placement. The type species is P. reticulata.
Porocoscinus eurys[179] Sp. nov Valid Kruse & Debrenne Cambrian Шаблон:Flag A member of Archaeocyatha.
Pristiograptus paradoxus[199] Sp. nov In press Loydell & Walasek Silurian (Telychian) Шаблон:Flag A graptolite
Stictocyathus[179] Gen. et sp. nov Valid Kruse & Debrenne Cambrian Шаблон:Flag A member of Archaeocyatha. Genus includes new species S. cavus.
Subtumulocyathellus satus[179] Sp. nov Valid Kruse & Debrenne Cambrian Шаблон:Flag A member of Archaeocyatha.
Torquigraptus loveridgei[199] Sp. nov In press Loydell & Walasek Silurian (Telychian) Шаблон:Flag A graptolite
Torquigraptus wilsoni[200] Sp. nov Valid Loydell Silurian (Telychian) Шаблон:Flag A graptolite
Toscanisoma[201] Gen. et 2 sp. nov Valid Wendt Late Triassic (Carnian) San Cassiano Шаблон:Flag A member of Ascidiacea. The type species is T. multipartitum; genus also includes T. triplicatum.
Utahscolex[202] Gen. et comb. nov Valid Whitaker et al. Cambrian (Wuliuan) Spence Шаблон:Flag
(Шаблон:Flag)
A palaeoscolecid; a new genus for "Palaeoscolex" ratcliffei Robison (1969)

Vermilituus[203]

Gen. et sp. nov

Valid

Li et al.

Cambrian Stage 3

Chiungchussu

Шаблон:Flag

A small, encrusting tubular protostomian, preserved attached to a mobile host (Vetulicola). The type species is V. gregarius.

Wronacyathus[179] Gen. et sp. nov Valid Kruse & Debrenne Cambrian Шаблон:Flag A member of Archaeocyatha. Genus includes new species W. ayuzhui.
Zhongpingscolex[204] Gen. et sp. nov Valid Shao et al. Cambrian (Fortunian) Kuanchuanpu Шаблон:Flag A scalidophoran, probably a stem-group kinorhynch. Genus includes new species Z. qinensis.
Zuunia[205] Gen. et sp. nov Yang et al. Late Ediacaran Zuun-Arts Шаблон:Flag A cloudinid. The type species is Z. chimidtsereni.

Research

  • A study on the taphonomy of three-dimensionally preserved specimens of Charnia from the White Sea, and on their implications for the knowledge of rangeomorph feeding and physiology, is published by Butterfield (2020).[206]
  • A study on the morphology and likely mode of life of Beothukis mistakensis is published by McIlroy et al. (2020).[207]
  • Evidence of preservation of internal anatomical structures in cloudinomorph fossils from the Ediacaran Wood Canyon Formation (Nevada, United States) is reported by Schiffbauer et al. (2020), who interpret these structures as probable digestive tracts, and evaluate their implications for the knowledge of the phylogenetic relationships of cloudinomorphs.[208]
  • Fossils of Dickinsonia identical with D. tenuis from the Ediacara Member of the Rawnsley Quartzite in South Australia are reported from the late Ediacaran Maihar Sandstone of the Bhander Group (India; found in the roof of Auditorium Cave at Bhimbetka rock shelters) by Retallack et al. (2020), who interpret this finding as confirming the assembly of Gondwana by 550 Ma;[209] however, Meert et al. (2023) subsequently reinterpreted purported fossil material of Dickinsonia as an impression resulting from decay of a modern beehive.[210]
  • New specimens of Mafangscolex, providing the first detailed information on the anatomy of a proboscis in palaeoscolecids, are described from the Cambrian Xiaoshiba Lagerstätte (Kunming, China) by Yang et al. (2020).[211]
  • A study on the type material of a putative Ordovician annelid Haileyia adhaerens is published by Muir & Botting (2020) who find no evidence indicating that H. adhaerens is an annelid, or even a recognizable fossil.[212]
  • New hyolithid specimens preserving helens and interior soft tissues, including muscle scars and digestive tracts, are described from the Guanshan Biota (Cambrian Stage 4; Yunnan, China) by Liu et al. (2020).[213]
  • Redescription of Acosmia maotiania based on data from new and historic fossil material is published by Howard et al. (2020), who interpret this animal as a stem group ecdysozoan.[214]
  • Two types of microscopic reticulate cuticular patterns are described in Cambrian stem-group scalidophorans from the Kuanchuanpu Formation (China) by Wang et al. (2020), who argue that these cuticular networks replicate the cell boundaries of the epidermis.[215]
  • A study on the anatomy and phylogenetic relationships of Facivermis yunnanicus, based on data from the holotype and new specimens, is published by Howard et al. (2020), who consider this species to be a luolishaniid lobopodian.[216]
  • New type of a compound eye is identified in specimens of "Anomalocaris" briggsi from the Cambrian Emu Bay Shale (Australia) by Paterson, Edgecombe & García-Bellido (2020), who interpret the eye morphology of "A." briggsi as suggestive of this animal being a mesopelagic species, capable of inhabiting depths of several hundred meters, and likely using its acute, light-sensitive eyes to detect plankton in dim down-welling light.[217]
  • An isolated frontal appendage of a miniature hurdiid radiodont (less than half the size of the next smallest radiodont frontal appendage discovered so far) is described from the Ordovician (Tremadocian) Dol-cyn-Afon Formation (Wales, United Kingdom) by Pates et al. (2020), representing the first radiodont reported from the UK, the first record of this group from the palaeocontinent Avalonia, and the first from an environment dominated by sponges rather than euarthropods.[218]
  • Barrios-de Pedro, Osuna & Buscalioni (2020) report the discovery of trematode and nematode eggs in coprolites from the Barremian Las Hoyas fossil site (Spain).[219]

Foraminifera

Name Novelty Status Authors Age Type locality Country Notes Images

Carseyella[220]

Gen. et sp. nov

Valid

Schlagintweit

Early Cretaceous (Aptian and Albian)

Шаблон:Flag
Шаблон:Flag
Шаблон:Flag
Шаблон:Flag

A new genus for "Orbitolina" walnutensis Carsey (1926) and "Dictyoconus" algerianus Cherchi & Schroeder (1982). Announced in 2020; the final version of the article naming it was published in 2021.

Other organisms

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images
Annularidens[221] Gen. et sp. nov In press Ouyang et al. Ediacaran Doushantuo Шаблон:Flag An acritarch. Genus includes new species A. inconditus.
Anqiutrichoides[222] Gen. et sp. nov Valid Li et al. Tonian Shiwangzhuang Шаблон:Flag A multicellular organism of uncertain phylogenetic placement, possibly a eukaryotic alga. Genus includes new species A. constrictus.
Aphralysia anfracta[223] Sp. nov Valid Kopaska-Merkel, Haywick & Keyes Carboniferous (Serpukhovian) Шаблон:Flag
(Шаблон:Flag)
A tubular calcitic microfossil of uncertain affinities
Arborea denticulata[224] Sp. nov Valid Wang et al. Ediacaran Dengying Шаблон:Flag A frondose fossil of uncertain affinities.
Archaeosporites[225] Gen. et sp. nov Valid Harper et al. Early Devonian Rhynie chert Шаблон:Flag A fungus belonging to the group Archaeosporaceae. Genus includes new species A. rhyniensis.
Asteridium tubulus[226] Sp. nov Valid Yin et al. Cambrian Stage 4 Шаблон:Flag An organic-walled microfossil. Announced in 2020; the final version of the article naming it was published in 2021.
Attenborites[227] Gen. et sp. nov Valid Droser et al. Ediacaran Rawnsley Шаблон:Flag An organism of uncertain phylogenetic placement, described on the basis of a well-defined irregular oval to circular fossil. Genus includes new species A. janeae. Announced in 2018; the final version of the article naming it was published in 2020.
Bispinosphaera vacua[221] Sp. nov In press Ouyang et al. Ediacaran Doushantuo Шаблон:Flag An acritarch.
Brijax[228] Gen. et sp. nov In press Krings & Harper Devonian Rhynie chert Шаблон:Flag A probable chytrid fungus. Genus includes new species B. amictus.
Convolutubus[229] Gen. et sp. nov Valid Vaziri et al. Ediacaran Шаблон:Flag An organic-walled tubular organism. Genus includes new species C. dargazinensis.
Corrugasphaera perfecta[226] Sp. nov Valid Yin et al. Cambrian Stage 4 Шаблон:Flag An organic-walled microfossil. Announced in 2020; the final version of the article naming it was published in 2021.
Crassimembrana[221] Gen. et 2 sp. nov In press Ouyang et al. Ediacaran Doushantuo Шаблон:Flag An acritarch. Genus includes new species C. crispans and C. multitunica.
Cyanosarcinopsis[230] Gen. et sp. nov Valid Calça & Fairchild Permian Assistência Шаблон:Flag A chroococcacean. Genus includes new species C. hachiroi.
Cyathochitina brussai[231] Sp. nov In press De la Puente, Paris & Vaccari Ordovician (Hirnantian) and Silurian (Rhuddanian) Brutia
Clemville
Salar del Rincón
Soom Shale
Шаблон:Flag
Шаблон:Flag
Шаблон:Flag
Шаблон:Flag
Шаблон:Flag
Шаблон:Flag
Шаблон:Flag?
Шаблон:Flag?
Шаблон:Flag?
A chitinozoan.
Cyathochitina lariensis[231] Sp. nov In press De la Puente, Paris & Vaccari Latest Ordovician–earliest Silurian Salar del Rincón Шаблон:Flag A chitinozoan.
Cyathochitina punaensis[231] Sp. nov In press De la Puente, Paris & Vaccari Latest Ordovician–earliest Silurian Salar del Rincón Шаблон:Flag A chitinozoan.
Cymatiosphaera spina[226] Sp. nov Valid Yin et al. Cambrian Stage 4 Шаблон:Flag An organic-walled microfossil. Announced in 2020; the final version of the article naming it was published in 2021.
Dichothallus[232] Gen. et sp. nov In press Naugolnykh Permian (early Kungurian) Philippovian Шаблон:Flag A brown alga of uncertain phylogenetic placement. Genus includes new species D. divaricatus.
Dictyocyrillium[233] Gen. et sp. nov In press Martí Mus, Moczydłowska & Knoll Tonian Elbobreen Шаблон:Flag A vase-shaped microfossil. Genus includes new species D. erythron.
Distosphaera jinguadunensis[221] Sp. nov In press Ouyang et al. Ediacaran Doushantuo Шаблон:Flag An acritarch.
Dongyesphaera[234] Gen. et sp. nov In press Yin et al. Paleoproterozoic Tianpengnao Шаблон:Flag An acritarch. Genus includes new species D. tenuispina.
Eoentophysalis hutuoensis[234] Sp. nov In press Yin et al. Paleoproterozoic Hebiancun Шаблон:Flag A cyanobacterium belonging to the family Entophysalidaceae
Eosolena magna[222] Sp. nov Valid Li et al. Tonian Shiwangzhuang Шаблон:Flag A multicellular, eukaryotic alga.
Flabellophyton obesum[235] Sp. nov Valid Wan et al. Ediacaran Шаблон:Flag An organism of uncertain phylogenetic placement, possibly an alga.
Flabellophyton stupendum[236] Sp. nov In press Xiao et al. Ediacaran Rawnsley Quartzite Шаблон:Flag Probably a benthic macroalga.
Flabellophyton typicum[235] Sp. nov Valid Wan et al. Ediacaran Шаблон:Flag An organism of uncertain phylogenetic placement, possibly an alga.
Liulingjitaenia irregularis[236] Sp. nov In press Xiao et al. Ediacaran Rawnsley Quartzite Шаблон:Flag Probably a benthic macroalga.
Mengeosphaera matryoshkaformis[221] Sp. nov In press Ouyang et al. Ediacaran Doushantuo Шаблон:Flag An acritarch.
Nepia[237] Gen. et sp. nov Valid Golubkova in Golubkova & Kochnev Ediacaran Шаблон:Flag An oscillatorian cyanobacteria. Genus includes new species N. calicina.
Noffkarkys[238] Gen. et sp. nov Valid Retallack & Broz Ediacaran and Cambrian Arumbera
Flathead
Grant Bluff
Jodhpur
Synalds
Шаблон:Flag
Шаблон:Flag
Шаблон:Flag
Шаблон:Flag
(Шаблон:Flag)
An organism of uncertain phylogenetic placement, a member of the family Charniidae. Genus includes new species N. storaaslii. Announced in 2020; the final version of the article naming it was published in 2021. Файл:Noffkarkys storaaslii.jpg
Obamus[239] Gen. et sp. nov Valid Dzaugis et al. Ediacaran Rawnsley Шаблон:Flag A torus-shaped organism, similar in gross morphology to some poriferans and benthic cnidarians. Genus includes new species O. coronatus. Announced in 2018; the final version of the article naming it was published in 2020. Файл:Obamus NT.jpg
Ophiocordyceps dominicanus[240] Sp. nov Valid Poinar & Vega Eocene or Miocene Dominican amber Шаблон:Flag A fungus, a species of Ophiocordyceps. Announced in 2019; the final version of the article naming it was published in 2020.
Palaeomycus[241] Gen. et sp. nov Valid Poinar Late Cretaceous (Cenomanian) Burmese amber Шаблон:Flag A fungus described on the basis of pycnidia. Genus includes new species P. epallelus. Announced in 2018; the final version of the article naming it was published in 2020.
Pararenicola gejiazhuangensis[222] Sp. nov Valid Li et al. Tonian Shiwangzhuang Шаблон:Flag A coenocytic alga.
Patagonifilum[242] Gen. et sp. nov In press Massini et al. Late Jurassic La Matilde Шаблон:Flag A cyanobacterium. Genus includes new species P. jurassicum.
Plagasphaera[226] Gen. et sp. nov Valid Yin et al. Cambrian Stage 4 Шаблон:Flag An organic-walled microfossil. Genus includes new species P. balangensis. Announced in 2020; the final version of the article naming it was published in 2021.
Polycephalomyces baltica[240] Sp. nov Valid Poinar & Vega Eocene Baltic amber Шаблон:Flag
(Шаблон:Flag)
A fungus belonging to the family Ophiocordycipitaceae. Announced in 2019; the final version of the article naming it was published in 2020.
Proaulopora ordosia[243] Sp. nov In press Liu et al. Ordovician Ordos Basin Шаблон:Flag A member of Nostocales.
Protoarenicola baishicunensis[222] Sp. nov Valid Li et al. Tonian Shiwangzhuang Шаблон:Flag A coenocytic alga.
Protoarenicola shijiacunensis[222] Sp. nov Valid Li et al. Tonian Shiwangzhuang Шаблон:Flag A coenocytic alga.
Protographum[244] Gen. et sp. nov Valid Le Renard et al. Early Cretaceous Potomac Шаблон:Flag
(Шаблон:Flag)
A fungus belonging or related to the family Aulographaceae. Genus includes new species P. luttrellii.
Pterospermella vinctusa[226] Sp. nov Valid Yin et al. Cambrian Stage 4 Шаблон:Flag An organic-walled microfossil. Announced in 2020; the final version of the article naming it was published in 2021.
Ramochitina deynouxi[231] Sp. nov In press De la Puente, Paris & Vaccari Latest Ordovician–earliest Silurian Salar del Rincón Шаблон:Flag
Шаблон:Flag
A chitinozoan.
Sinosabellidites huangshanensis[222] Sp. nov Valid Li et al. Tonian Shiwangzhuang Шаблон:Flag A coenocytic alga.
Spinachitina titae[231] Sp. nov In press De la Puente, Paris & Vaccari Latest Ordovician–earliest Silurian Salar del Rincón Шаблон:Flag A chitinozoan.
Spiroplasma burmanica[245] Gen. et sp. nov Valid Poinar Cretaceous (Albian-Cenomanian) Burmese amber Шаблон:Flag A bacterium belonging to the group Mollicutes, a species of Spiroplasma.
Stomiopeltites shangcunicus[246] Sp. nov Valid Maslova & Tobias in Maslova et al. Oligocene Shangcun Шаблон:Flag A fungus belonging to the family Micropeltidaceae. Announced in 2020; the final version of the article naming it was published in 2021.
Triskelia[247] Gen. et sp. nov Valid Strullu-Derrien et al. Devonian Rhynie Chert Шаблон:Flag An organism of uncertain phylogenetic placement, possibly a green alga[247] or a fungus.[248] Genus includes new species T. scotlandica. Announced in 2020; the final version of the article naming it was published in 2021.
Windipila wimmervoecksii[249] Sp. nov Valid Krings & Harper Early Devonian Windyfield Шаблон:Flag A fungal reproductive unit. Announced in 2019; the final version of the article naming it was published in 2020.

Research

  • A study on fossilized biopolymers in 3.5–3.3 Ga microbial mats from the Barberton Greenstone Belt (South Africa) is published by Hickman-Lewis, Westall & Cavalazzi (2020), who interpret their findings as indicating that Bacteria and Archaea flourished together in Earth's earliest ecosystems.[250]
  • Putative ciliate fossils from the Cryogenian Taishir Formation (Tsagaan Olom Group, Zavkhan Terrane, Mongolia) are reinterpreted as more likely to be algal reproductive structures by Cohen, Vizcaíno & Anderson (2020), who also report the first occurrence of these fossils in the earliest Ediacaran Ol Formation.[251]
  • The discovery of fungal fossils in an 810 to 715 million year old dolomitic shale from the Mbuji-Mayi Supergroup (Democratic Republic of the Congo) is reported by Bonneville et al. (2020), representing the oldest, molecularly identified remains of Fungi reported so far.[252]
  • Specimens of Palaeopascichnus linearis living before the Gaskiers glaciation are described from marine strata within the Rocky Harbour Formation by Liu & Tindal (2020), representing the oldest documented macrofossils from the Ediacaran successions of Newfoundland reported so far.[253]
  • A study on the developmental biology and phylogenetic relationships of Helicoforamina wenganica is published by Yin et al. (2020).[254]
  • A study on the morphology and affinities of a putative early sponge Namapoikia rietoogensis is published by Mehra et al. (2020), who argue that Namapoikia lacked the physical characteristics expected of an animal.[255]
  • A study on the morphology and inner ultrastructure of exceptionally preserved chitinozoan specimens from the Ordovician of Estonia, the United States and Russia is published by Liang et al. (2020), who interpret their findings as evidence of a protist affinity of chitinozoans.[256]

Trace fossils

  • A study on patterns of ecosystem engineering behaviors across the Permian-Triassic boundary, as indicated by data from trace fossils, and on their possible impact on ecosystem recovery in the benthic environment in the aftermath of the Permian–Triassic extinction event is published by Cribb & Bottjer (2020).[257]
  • New fossil tracks, probably produced by a pterygote insect, are described from the Upper Jurassic-Lower Cretaceous Botucatu Formation (Brazil) by Peixoto et al. (2020), who name a new ichnotaxon Paleohelcura araraquarensis, and evaluate the implications of this finding for the knowledge of ecological relationships within the Botucatu paleodesert.[258]
  • A new assemblage of nests produced by social insects is described from the Brushy Basin Member of the Upper Jurassic Morrison Formation (Utah, United States) by Smith, Loewen & Kirkland (2020), who name a new ichnotaxon Eopolis ekdalei.[259]
  • New tetrapod trackways are described from the Tapinocephalus Assemblage Zone of the South African Karoo Basin by Cisneros et al. (2020), who interpret these tracks as produced by small amphibians, and consider them to be evidence that the diversity of Guadalupian amphibians of the Karoo Basin was greater than indicated by body fossils alone.[260]
  • Mujal & Schoch (2020) describe amphibian tracks from the Middle Triassic Erfurt Formation (Germany, probably produced by capitosaurid temnospondyls, and evaluate the implications of this finding for the knowledge of the locomotion and habitats of temnospondyls.[261]
  • Fossil tracks likely produced by early amniotes are described from the Carboniferous (Pennsylvanian) Manakacha Formation (Arizona, United States) by Rowland, Caputo & Jensen (2020), who interpret these tracks as evidence of early adaptation of amniotes to eolian dunefield deserts, as well as the first documented occurrence of a lateral-sequence gait in the pre-Miocene tetrapod fossil record.[262]
  • Revision of Pachypes-like footprints from the CisuralianGuadalupian of Europe and North America is published by Marchetti et al. (2020), who date the earliest known occurrence of Pachypes to the Artinskian, interpret the footprints belonging to the ichnospecies Pachypes ollieri as produced by nycteroleter pareiasauromorphs, and argue that the earliest occurrences of pareiasauromorph footprints precede the earliest occurrence of this group in the skeletal record by at least 10 million years.[263]
  • The first known fossil example of an iguana nesting burrow is reported from the Pleistocene Grotto Beach Formation (The Bahamas) by Martin et al. (2020).[264]
  • Fossil tracks possibly produced by a monjurosuchid-like choristoderan are described from the Albian Daegu Formation (South Korea) by Lee, Kong & Jung (2020), who attempt to determine the trackmaker's locomotory posture on land, and name a new ichnotaxon Novapes ulsanensis.[265]
  • New Early Triassic archosauriform track assemblage is described from the Gardetta Plateau (Western Alps, Italy) by Petti et al. (2020), who interpret this finding as evidence of the presence of archosauriforms at low latitudes soon after the Permian–Triassic extinction event, and name a new ichnotaxon Isochirotherium gardettensis.[266]
  • Fossil tracks produced by large crocodylomorphs, possibly moving bipedally, are described from the Lower Cretaceous Jinju Formation (South Korea) by Kim et al. (2020), who name a new ichnotaxon Batrachopus grandis.[267]
  • The first probable deinonychosaur (likely troodontid) tracks from Canada are described from the Campanian Wapiti Formation (Alberta) by Enriquez et al. (2020).[268]
  • Three sauropod trackways, probably produced by members of Titanosauriformes, are described from the Middle Jurassic (Bathonian) of the Castelbouc cave (France) by Moreau et al. (2020), who name a new ichnotaxon Occitanopodus gandi.[269]
  • New dinosaur tracks, including tracks representing the ichnogenus Deltapodus (probably produced by stegosaurians), are described from the Middle Jurassic of the Isle of Skye (Scotland, United Kingdom) by Шаблон:Proper name et al. (2020), expanding known diversity of dinosaur tracks from this locality.[270]
  • A review of the Late Cretaceous dinosaur tracksites of Bolivia is published by Meyer et al. (2020), who describe new dinosaur tracksites from the Chuquisaca and Potosi departments, and report parallel trackways of subadult ankylosaurs interpreted as evidence of social behavior amongst these dinosaurs.[271]
  • A study on Pleistocene bird tracks from the Cape south coast of South Africa is published by Helm et al. (2020), who report six tracksites with tracks produced by large birds, possibly indicating the existence of large Pleistocene forms of extant bird taxa.[272]
  • Mazin & Pouech (2020) describe non-pterodactyloid pterosaur tracks from the ichnological site known as "the Pterosaur Beach of Crayssac" (Tithonian; south-western France), evaluate the implications of these tracks for the knowledge of the terrestrial capabilities of non-pterodactyloid pterosaurs, and name a new ichnogenus Rhamphichnus.[273]
  • Dinosaur and synapsid tracks are described from the Pliensbachian-Toarcian of the northern main Karoo Basin (South Africa) by Bordy et al. (2020), who interpret these tracks as evidence that dinosaurs and synapsids were among the last inhabitants of the main Karoo Basin some 183 million years ago, and name a new ichnotaxon Afrodelatorrichnus ellenbergeri (likely of ornithischian affinity).[274]
  • New complex burrow system produced by geomyid rodents is described from the Oligocene Chilapa Formation (Mexico) by Guerrero-Arenas, Jiménez-Hidalgo & Genise (2020), who name a new ichnotaxon Yaviichnus iniyooensis, and interpret the complexity of these burrows as probable evidence of some degree of gregariousness of their producers.[275]

History of life in general

  • Bobrovskiy et al. (2020) and van Maldegem et al. (2020) argue that putative sponge biomarkers can be generated from algal sterols, and interpret their findings as undermining the interpretation of biomarkers found in Precambrian rocks posited as evidence of existence of animals before the latest Ediacaran.[276][277]
  • Liu & Dunn (2020), describe filamentous organic structures preserved among frond-dominated fossil assemblages from the Ediacaran of Newfoundland (Canada), including filaments that appear to directly connect individual specimens of one rangeomorph taxon, and interpret this finding as possible evidence that Ediacaran frondose taxa were clonal.[278]
  • A study on the age of the Ediacaran biota from the Conception and St. John's Groups at Mistaken Point Ecological Reserve (Newfoundland, Canada) is published by Matthews et al. (2020).[279]
  • Approximately 563-million-year-old Ediacaran biota is reported from the Itajaí Basin (Brazil) by Becker-Kerber et al. (2020), representing the first record of Ediacaran macrofossils from Gondwana in deposits of similar age to the Avalon biota.[280]
  • An Ediacaran Lagerstätte with phosphatized animal-like eggs, embryos, acritarchs and cyanobacteria is reported from the Portfjeld Formation (Peary Land, Greenland) by Willman et al. (2020), representing the first record of a Doushantuo type preservation of fossils (with diagenetic phosphate replacement of originally organic material) from Laurentia reported so far.[281]
  • A study on biomarkers from Ediacaran sediments in the White Sea area is published by Bobrovskiy et al. (2020), who interpret their findings as indicating that eukaryotic algae were abundant among the food sources available for the Ediacaran biota.[282]
  • A study aiming to quantify changes of regional-scale diversity in marine fossils across time and space throughout the Phanerozoic is published by Close et al. (2020).[283]
  • A study on the structure of the Phanerozoic fossil record, aiming to determine relative impacts of extinctions and evolutionary radiations on the co-occurrence of species throughout the Phanerozoic, is published by Hoyal Cuthill, Guttenberg & Budd (2020), who argue that their findings refute any direct causal relationship between the proportionally most comparable mass radiations and extinctions.[284]
  • A study on the timing of known diversification and extinction events from Cambrian to Triassic, based on data from 11,000 marine fossil species, is published by Fan et al. (2020).[285]
  • The discovery of a new, exceptionally-preserved Cambrian biota, with fossils belonging to multiple phyla, is reported from the Guzhangian Longha Formation (Yunnan, China) by Peng et al. (2020).[286]
  • A study on changes in body size in skeletal animals from the Siberian Platform through the early Cambrian is published by Zhuravlev & Wood (2020).[287]
  • A study on the relationship between body size and extinction risk in the marine fossil record across the past 485 million years is published by Payne & Heim (2020).[288]
  • A study on the diversification rates of Ordovician animals living on hard substrates, aiming to determine when they experienced their greatest origination rates, is published by Franeck & Liow (2020).[289]
  • New information on the biotic composition of the Silurian Waukesha Lagerstätte (Wisconsin, United States) is presented by Wendruff et al. (2020), who report a biodiversity far richer than previously reported, and explore the taphonomic history of the fossils of this biota.[290]
  • A study on the diversity dynamics of the marine brachiopods, bivalves and gastropods throughout the Late Palaeozoic Ice Age is published by Seuss, Roden & Kocsis (2020).[291]
  • A study comparing the chemistry of fossil soft tissues of invertebrates and vertebrates from the Carboniferous Mazon Creek fossil beds (Illinois, United States) is published by McCoy et al. (2020), who report Tullimonstrum gregarium as grouping with vertebrates in their analysis.[292]
  • A study on the ages of known early–middle Permian tetrapod-bearing geological formations, as indicated by Bayesian tip dating methods, is published by Brocklehurst (2020), who interprets his findings as supporting the occurrence of the Olson's Extinction.[293]
  • A study on global infaunal response to the Permian–Triassic extinction event, as indicated by data from trace fossils, is published by Luo et al. (2020).[294]
  • A study on changes of marine latitudinal diversity gradient caused by the Permian–Triassic mass extinction is published by Song et al. (2020).[295]
  • A study on the latitudinal variation in Late Triassic tetrapod diversity, aiming to determine the relationship between latitudinal species richness and palaeoclimatic conditions, is published by Dunne et al. (2020).[296]
  • Description of new fossil material of Late Triassic tetrapods from the Hoyada del Cerro Las Lajas site (Ischigualasto Formation, Argentina), and a study on the age of tetrapod fossils from this site (including fossils of Pisanosaurus mertii) and their implications for the knowledge of the Late Triassic tetrapod evolution, is published by Desojo et al. (2020).[297]
  • A review of the evidence of a major change in ecological community structure during the Carnian, focusing on the temporal links of these biological changes with the Carnian Pluvial Event and on the role of volcanic eruptions and associated climate change as a possible trigger, is published by Dal Corso et al. (2020).[298]
  • An assemblage of fossilized vomits and coprolites is described from the Upper Triassic (Carnian) Reingraben Shales in Polzberg (Austria) by Lukeneder et al. (2020), who evaluate the implications of these bromalites for the knowledge of pelagic invertebrates-vertebrates trophic chain of the Late Triassic Polzberg biota, and interpret their finding as evidence indicating that the Mesozoic marine revolution has already started in the early Mesozoic.[299]
  • A study on the dynamics of the Adamanian/Revueltian faunal turnover, based on fossil data from the Petrified Forest National Park (Arizona, United States), is published by Hayes et al. (2020).[300]
  • A study on the palynological record from the Carnian–Norian transition in the western Barents Sea region is published by Klausen, Paterson & Benton (2020), who interpret their findings as indicating that major sea-level changes across the vast delta plains situated in the northern Pangaea might have triggered terrestrial turnovers during the Carnian–Norian transition and facilitated the gradual rise of the dinosaurs to ecosystem dominance.[301]
  • Wignall & Atkinson (2020) argue that the Triassic–Jurassic extinction event can be resolved into two distinct, short-lived extinction pulses separated by a several hundred-thousand-year interlude phase.[302]
  • A study on changes in shell size of marine bivalves and brachiopods from the Iberian Basin (Spain) across the Early Toarcian Oceanic Anoxic Event, aiming to determine the role of temperature for changes in body size of bivalves and brachiopods, is published by Piazza, Ullmann & Aberhan (2020).[303]
  • A study on the impact of warming and disturbance of the carbon cycle during the Toarcian Oceanic Anoxic Event on marine benthic macroinvertebrate assemblages from the Iberian Basin is published by Piazza, Ullmann & Aberhan (2020).[304]
  • A study on the persistence and abundance of an association of serpulids and hydroids during the Middle and Late Jurassic is published by Słowiński et al. (2020).[305]
  • Foster, Pagnac & Hunt-Foster (2020) describe the Late Jurassic biota from the Little Houston Quarry in the Black Hills of Wyoming, including the vertebrate fauna which is the second-most diverse in the entire Morrison Formation and the most diverse north of Como Bluff.[306]
  • A study on the age of the Huajiying Formation (China) and its implications for the knowledge of the timing of appearance and duration of the Jehol Biota is published by Yang et al. (2020).[307]
  • A study on the age of the biota from the Cretaceous Burmese amber from Hkamti is published by Xing & Qiu (2020).[308]
  • A study on extinction patterns of marine vertebrates during the last 20 million years of the Late Cretaceous, as indicated by fossils from northern Gulf of Mexico, is published by Ikejiri, Lu & Zhang (2020), who report evidence of two separate extinction events: one in the Campanian, and one at the end of the Maastrichtian.[309]
  • Rodríguez-Tovar et al. (2020) present evidence from trace fossils from the Chicxulub crater indicating that full recovery of the macrobenthic biota from this area was rapid, with the establishment of a well-developed tiered community within ~700 thousand years.[310]
  • A study on the impact of the early Cenozoic hyperthermal events on shallow marine benthic communities, based on data from fossils from the Gulf Coastal Plain, is published by Foster et al. (2020).[311]
  • A study on the geology and fauna (including hominins) of the new Mille-Logya site (Afar, Ethiopia) dated to between 2.914 and 2.443 Ma is published by Zeresenay Alemseged et al. (2020), who evaluate the implications of this site for the knowledge of how hominins and other fauna responded to environmental changes during this period.[312]
  • Studies on the magnitude and likely causes of megafaunal extinctions in the Indian subcontinent during the late Pleistocene and early Holocene are published by Jukar et al. (2020)[313] and Turvey et al. (2020).[314]
  • A new, diverse megafauna assemblage that suffered extinction sometime after 40,100 (±1700) years ago is reported from the South Walker Creek fossil deposits (Queensland, Australia) by Hocknull et al. (2020), who evaluate the implications of this assemblage for prevailing megafauna extinction hypotheses for Sahul.[315]
  • A study on ancient DNA of vertebrates and plants recovered from fossils and sediment from Hall's Cave (Edwards Plateau, Texas, United States), evaluating its implications for the knowledge of the climatic fluctuations from the Pleistocene to the Holocene on the local ecosystem, is published by Seersholm et al. (2020).[316]
  • A study on the phylogenetic relationships of early amniotes, recovering Parareptilia and Varanopidae as nested within Diapsida, will be published by Ford & Benson (2020), who name a new clade Neoreptilia.[317]
  • Regional-scale diversity patterns for terrestrial tetrapods throughout their entire Phanerozoic evolutionary history are presented by Close et al. (2020), who attempt to determine how informative the fossil record is about true global paleodiversity.[318]
  • A study on the impact of the appearance and evolution of herbivorous tetrapods on the evolution of land plants from the Carboniferous to the Early Triassic is published by Brocklehurst, Kammerer & Benson (2020).[319]
  • A study the terrestrial and marine fossil record of Late Permian to Late Triassic tetrapods, comparing species-level tetrapod biodiversity across latitudinal bins, is published by Allen et al. (2020).[320]
  • In a study published by Chiarenza et al. (2020)[321][322] the two main hypotheses for the mass extinction (the Deccan Traps and the Chicxulub impact) were evaluated using Earth System and Ecologial modelling, confirming that the asteroid impact was the main driver of this extinction while the volcanism might have boosted the recovery instead.
  • Bishop, Cuff & Hutchinson (2020) outline a workflow for integrating paleontological data with biomechanical principles and modeling techniques in order to create musculoskeletal models and study locomotor biomechanics of extinct animals, using Coelophysis as a case study.[323]
  • Saitta et al. (2020) propose a framework for studying sexual dimorphism in non-avian dinosaurs and other extinct taxa, focusing on likely secondary sexual traits and testing against all alternate hypotheses for variation in the fossil record.[324]
  • A study evaluating the utility of rare earth element profiles as proxies for biomolecular preservation in fossil bones, based on data from a specimen of Edmontosaurus annectens from the Standing Rock Hadrosaur Site (Hell Creek Formation; South Dakota, United States), is published by Ullmann et al. (2020).[325]
  • A study on the diversity and evolution of skull and jaw functions in sabre-toothed carnivores during the last 265 million years is published by Lautenschlager et al. (2020).[326]

Other research

  • Evidence indicating that the Great Oxidation Event predated Paleoproterozoic glaciation in Russia and snowball Earth deposits in South Africa is presented by Warke et al. (2020), who argue that their findings preclude hypotheses of Earth's oxygenation in which global glaciation preceded or caused the evolution of oxygenic photosynthesis.[327]
  • A study on the timing of the onset and termination of the Shuram carbon isotope excursion is published by Rooney et al. (2020), who argue that this excursion was divorced from the rise of the earliest preserved animal ecosystems.[328]
  • A study on the causes of the Late Ordovician mass extinction, based on data from the Ordovician-Silurian boundary stratotype (Dob's Linn, Scotland), is published by Bond & Grasby (2020), who interpret their findings as evidence that this extinction event was caused by volcanism, warming and anoxia.[329]
  • Evidence of wildfires at the FrasnianFamennian boundary is reported from Upper Devonian sections from western New York (United States) by Liu et al. (2020), who also provide an estimate of atmospheric O2 levels at this interval, and evaluate their implications for the knowledge of causes of the Late Devonian extinction.[330]
  • A study on the timing of the environmental changes associated with the Kellwasser events is published by Da Silva et al. (2020).[331]
  • Evidence of anomalously high mercury concentration in marine deposits encompassing the Hangenberg event from Carnic Alps (Italy and Austria) is presented by Rakociński et al. (2020), who argue that methylmercury poisoning in otherwise anoxic seas, caused by extensive volcanic activity, could be a direct kill mechanism of the end-Devonian Hangenberg extinction.[332]
  • A study on fossil plant spores with malformed sculpture and pigmented walls, recovered from terrestrial Devonian-Carboniferous boundary sections from East Greenland, is published by Marshall et al. (2020), who interpret their findings as evidence that the terrestrial mass extinction at the Devonian-Carboniferous boundary coincided with elevated UV-B radiation, indicative of ozone layer reduction.[333]
  • Fields et al. (2020) attempt to determine whether the dramatic drop in stratospheric ozone coinciding with the end-Devonian extinction events was caused by a nearby supernova explosion.[334]
  • A series of articles on the biostratigraphy of the Karoo Supergroup, providing a formal biozonation scheme for the Stormberg Group and dividing the Beaufort and Stormberg groups into nine tetrapod assemblage zones, is published in the June 2020 issue of the South African Journal of Geology.[335][336][337][338][339][340][341][342][343][344]
  • A study on the age of a pristine ash-fall deposit in the Karoo Lystrosaurus Assemblage Zone (South Africa) is published by Gastaldo et al. (2020), who report that turnover from the Daptocephalus Assemblage Zone to Lystrosaurus AZ in this basin occurred over 300 ka before the end-Permian marine event, and interpret their findings as refuting the concurrentness of turnovers in terrestrial and marine ecosystems at the end of the Permian.[345]
  • A study evaluating the contribution of loss of ecosystems on land and consequent massive terrestrial biomass oxidation to atmosphere–ocean biogeochemistry at the Permian–Triassic boundary is published by Dal Corso et al. (2020).[346]
  • A study aiming to determine the mechanism that drove vast stretches of the ocean to an anoxic state during the Permian–Triassic extinction event is published by Schobben et al. (2020).[347]
  • Evidence indicating that the Permian–Triassic extinction event was linked with ocean acidification due to carbon degassing from the Siberian sill intrusions is presented by Jurikova et al. (2020).[348]
  • Evidence from paired coronene and mercury spikes in stratigraphic sections in south China and Italy, indicative of the occurrence of two pulsed volcanic eruption events coinciding with the initiation of the end-Permian terrestrial ecological disturbance and marine extinction, is presented by Kaiho et al. (2020).[349]
  • A study on variations of ~10-Myr scale monsoon dynamics during the early Mesozoic, and on their impact on climate and ecosystem dynamics (including the dispersal of early dinosaurs), is published by Ikeda, Ozaki & Legrand (2020).[350]
  • New geochronologic and paleoclimatic data from Carnian-aged strata in the Ischigualasto-Villa Unión Basin (Argentina) is presented by Mancuso et al. (2020), who interpret their findings as indicating that the Carnian Pluvial Event interval in western Gondwana was warmer and more humid than periods before or after this interval, confirming that the CPE was a global event.[351]
  • A study on the age of the top of the Moenkopi Formation, the lower Blue Mesa Member, and the lower and upper Sonsela Member of the Chinle Formation is published by Rasmussen et al. (2020), who argue that the biotic turnover preserved in the mid-Sonsela Member at the Petrified Forest National Park was a mid-Norian event.[352]
  • A study on ocean temperatures during the Triassic–Jurassic extinction event is published by Petryshyn et al. (2020), who report no evidence for short-term cooling or initial warming across the 1-80,000 years of the extinction event.[353]
  • Evidence of low ocean sulfate levels at the end-Triassic mass extinction, linked to rapid development of marine anoxia, is presented by He et al. (2020).[354]
  • A study on the causes of the negative organic carbon isotope excursion associated with the end-Triassic mass extinction, based on data from its type locality in the Bristol Channel Basin (United Kingdom), is published by Fox et al. (2020), who interpret this isotopic excursion as caused by an abrupt relative sea level drop rather than by massive inputs of exogenous light carbon into the atmosphere, and argue that the disappearance of marine biota at the type locality is the result of local environmental changes and does not mark the global extinction event, while the main extinction phase occurred slightly later in marine strata.[355]
  • Evidence of increasing atmospheric CO2 concentration at the onset of the end-Triassic extinction event, based on data from fossil leaves of the seed fern Lepidopteris ottonis from southern Sweden, is presented by Slodownik, Vajda & Steinthorsdottir (2020).[356]
  • A review of the geology, paleoecology and taxonomic status of the fauna from the Cretaceous Kem Kem Beds of Morocco is published by Ibrahim et al. (2020).[357]
  • Klages et al. (2020) report evidence from the West Antarctic shelf indicating the occurrence of a temperate lowland rainforest environment at a palaeolatitude of about 82° S during the Late Cretaceous (TuronianSantonian).[358]
  • A review and revision of the stratigraphy of the Hell Creek Formation is published by Fowler (2020).[359]
  • A study on the timing of a volcanic outgassing at the end of the Cretaceous, and on its implications for the knowledge of causes of the Cretaceous-Paleogene mass extinction, is published by Hull et al. (2020).[360]
  • A study on paleosols from the eastern edge of the Deccan Volcanic Province (central India), evaluating their implications for reconstructions of climate and terrestrial environments of India before and after the Cretaceous–Paleogene extinction event and for the knowledge of causes of this extinction event, is published by Dzombak et al. (2020).[361]
  • A detailed record of molecular burn markers from the Chicxulub crater and in ocean sediments distant from the impact site is presented by Lyons et al. (2020), who interpret their findings as indicating rapid heating after the impact and a fossil carbon source, and argue that soot from the target rock immediately contributed to global cooling and darkening after the impact at the end of the Cretaceous.[362]
  • A study on the origin, recovery, and development of microbial life in the Chicxulub crater after the impact at the end of the Cretaceous, and on the environmental conditions in the crater up to ~4 million years after the Cretaceous–Paleogene extinction event, is published by Schaefer et al. (2020).[363]
  • A study on Earth's climate throughout the Cenozoic era, based on a highly resolved and well-dated record of benthic carbon and oxygen isotopes from deep-sea foraminifera, is published by Westerhold et al. (2020).[364]
  • Van Couvering & Delson (2020) define 17 African land mammal ages covering the Cenozoic record of the Afro-Arabian continent.[365]
  • A study on the amount and makeup of the carbon added to the ocean during the Paleocene–Eocene Thermal Maximum, based on geochemical data from planktic foraminifera, is published by Haynes & Hönisch (2020), who interpret their findings as indicating that volcanic emissions were the main carbon source responsible for PETM warming.[366]
  • Evidence from Eocene plant fossils from the Bangong-Nujiang suture indicating that the Tibetan Plateau area hosted a diverse subtropical ecosystem approximately 47 million years ago and that this area was both low and humid at the time is presented by Su et al. (2020).[367]
  • A study on the climate evolution across the Oligocene, examining the relationship between global temperatures and continental-scale polar ice sheets following the establishment of ice sheets on Antarctica, is published by O'Brien et al. (2020).[368]
  • A study aiming to test the hypothesis that the emergence of the Southeast Asian islands played a significant role in driving the cooling of Earth's climate since the Miocene Climatic Optimum is published by Park et al. (2020).[369]
  • A study on the environment at Olduvai Gorge at the emergence of the Acheulean technology 1.7 million years ago, based on data from fossil lipid biomarkers, is published by Sistiaga et al. (2020).[370]
  • A study on freshwater fauna and flora found in a sediment sample from the Yuka mammoth carcass, evaluating its implications for reconstructions of the waterbody type where the mammoth was preserved and for the knowledge of the nature of the waterbodies that existed in Beringia during the MIS3 climatic optimum, is published by Neretina et al. (2020).[371]
  • A study on the Neogene paleobotanical record and climate in the northernmost part of the Central Andean Plateau, based on data from the Descanso Formation (Peru), is published by Martínez et al. (2020), who report the earliest evidence of a puna-like ecosystem in the Pliocene and a montane ecosystem without modern analogs in the Miocene, as well as evidence of wetter paleoclimatic conditions than previously estimated by regional climate model simulations.[372]
  • A study on environmental changes in Southeast Asia from the Early Pleistocene to the Holocene, based on stable isotope data from Southeast Asian mammals, and on their impact on the evolution of mammals (including hominins), is published by Louys & Roberts (2020).[373]
  • A study on the climate variability in the southwest Indian Ocean area throughout the past ~8000 years, evaluating its implications for the knowledge of possible causes of extinction of megafauna from Madagascar and Mascarene Islands, is published by Li et al. (2020).[374]
  • Van Neer et al. (2020) report faunal remains from the Takarkori rock shelter in the Acacus Mountains region (Libya), and evaluate their implications for the knowledge of the climate and hydrography of the Sahara throughout the Holocene.[375]
  • New Mesozoic and Paleogene amber occurrences, preserving diverse inclusions of arthropods, plants and fungi, are reported from Australia and New Zealand by Stilwell et al. (2020).[376]

References

Шаблон:Reflist

  1. 1,0 1,1 1,2 1,3 1,4 1,5 1,6 Шаблон:Cite journal
  2. Шаблон:Cite journal
  3. Шаблон:Cite journal
  4. Шаблон:Cite journal
  5. 5,0 5,1 5,2 Шаблон:Cite journal
  6. 6,0 6,1 6,2 6,3 6,4 6,5 6,6 6,7 6,8 6,9 Шаблон:Cite journal
  7. Шаблон:Cite journal
  8. 8,0 8,1 Шаблон:Cite journal
  9. Шаблон:Cite journal
  10. 10,0 10,1 Шаблон:Cite journal
  11. Шаблон:Cite journal
  12. 12,0 12,1 12,2 Шаблон:Cite journal
  13. 13,0 13,1 13,2 Шаблон:Cite journal
  14. Шаблон:Cite journal
  15. Шаблон:Cite journal
  16. Шаблон:Cite journal
  17. 17,0 17,1 Шаблон:Cite journal
  18. Шаблон:Cite journal
  19. 19,0 19,1 Шаблон:Cite journal
  20. Шаблон:Cite journal
  21. Шаблон:Cite journal
  22. Шаблон:Cite journal
  23. Шаблон:Cite journal
  24. Шаблон:Cite journal
  25. Шаблон:Cite journal
  26. Шаблон:Cite journal
  27. Шаблон:Cite journal
  28. 28,0 28,1 Шаблон:Cite journal
  29. 29,0 29,1 Шаблон:Cite journal
  30. 30,0 30,1 30,2 30,3 Шаблон:Cite journal
  31. Шаблон:Cite journal
  32. Шаблон:Cite journal
  33. 33,0 33,1 33,2 Шаблон:Cite journal
  34. Шаблон:Cite journal
  35. 35,0 35,1 35,2 Шаблон:Cite journal
  36. 36,0 36,1 36,2 36,3 Шаблон:Cite journal
  37. 37,0 37,1 Шаблон:Cite journal
  38. Шаблон:Cite journal
  39. Шаблон:Cite journal
  40. Шаблон:Cite journal
  41. 41,0 41,1 41,2 Шаблон:Cite journal
  42. 42,0 42,1 42,2 Шаблон:Cite journal
  43. Шаблон:Cite journal
  44. 44,0 44,1 44,2 44,3 44,4 44,5 Шаблон:Cite journal
  45. 45,0 45,1 Шаблон:Cite journal
  46. 46,0 46,1 46,2 Шаблон:Cite journal
  47. 47,0 47,1 47,2 Шаблон:Cite journal
  48. 48,0 48,1 48,2 Шаблон:Cite journal
  49. Шаблон:Cite journal
  50. 50,0 50,1 50,2 Шаблон:Cite journal
  51. Шаблон:Cite journal
  52. Шаблон:Cite journal
  53. Шаблон:Cite journal
  54. 54,0 54,1 54,2 Шаблон:Cite journal
  55. Шаблон:Cite journal
  56. 56,0 56,1 56,2 56,3 56,4 Шаблон:Cite journal
  57. 57,0 57,1 Шаблон:Cite journal
  58. Шаблон:Cite journal
  59. Шаблон:Cite journal
  60. Шаблон:Cite journal
  61. Шаблон:Cite journal
  62. Шаблон:Cite journal
  63. Шаблон:Cite journal
  64. 64,0 64,1 Шаблон:Cite journal
  65. 65,0 65,1 Шаблон:Cite journal
  66. Шаблон:Cite journal
  67. 67,0 67,1 Шаблон:Cite journal
  68. Шаблон:Cite journal
  69. Шаблон:Cite journal
  70. Шаблон:Cite journal
  71. 71,0 71,1 Шаблон:Cite journal
  72. Шаблон:Cite journal
  73. Шаблон:Cite journal
  74. Шаблон:Cite journal
  75. Шаблон:Cite journal
  76. 76,0 76,1 76,2 76,3 76,4 76,5 76,6 76,7 Шаблон:Cite journal
  77. 77,0 77,1 77,2 77,3 77,4 77,5 Шаблон:Cite journal
  78. 78,0 78,1 78,2 Шаблон:Cite journal
  79. 79,0 79,1 Шаблон:Cite journal
  80. 80,0 80,1 Шаблон:Cite journal
  81. Шаблон:Cite journal
  82. Шаблон:Cite journal
  83. Шаблон:Cite journal
  84. 84,0 84,1 Шаблон:Cite journal
  85. 85,0 85,1 Шаблон:Cite journal
  86. 86,0 86,1 Шаблон:Cite journal
  87. 87,00 87,01 87,02 87,03 87,04 87,05 87,06 87,07 87,08 87,09 87,10 87,11 Шаблон:Cite journal
  88. Шаблон:Cite journal
  89. Шаблон:Cite journal
  90. Шаблон:Cite journal
  91. Шаблон:Cite journal
  92. Шаблон:Cite journal
  93. Шаблон:Cite journal
  94. 94,0 94,1 94,2 Шаблон:Cite journal
  95. Шаблон:Cite journal
  96. 96,0 96,1 Шаблон:Cite journal
  97. 97,0 97,1 Шаблон:Cite journal
  98. Шаблон:Cite journal
  99. 99,0 99,1 99,2 Шаблон:Cite journal
  100. Шаблон:Cite journal
  101. Шаблон:Cite journal
  102. Шаблон:Cite journal
  103. 103,0 103,1 103,2 103,3 103,4 103,5 103,6 Шаблон:Cite journal
  104. Шаблон:Cite journal
  105. Шаблон:Cite journal
  106. Шаблон:Cite journal
  107. Шаблон:Cite journal
  108. Шаблон:Cite journal
  109. Шаблон:Cite journal
  110. Шаблон:Cite journal
  111. Шаблон:Cite journal
  112. Шаблон:Cite journal
  113. Шаблон:Cite journal
  114. Шаблон:Cite journal
  115. Шаблон:Cite journal
  116. Шаблон:Cite journal
  117. Шаблон:Cite journal
  118. Шаблон:Cite journal
  119. Шаблон:Cite journal
  120. Шаблон:Cite journal
  121. 121,0 121,1 Шаблон:Cite journal
  122. 122,0 122,1 Шаблон:Cite journal
  123. 123,0 123,1 123,2 Шаблон:Cite journal
  124. Шаблон:Cite journal
  125. Шаблон:Cite journal
  126. 126,0 126,1 Шаблон:Cite journal
  127. 127,0 127,1 127,2 127,3 127,4 127,5 Шаблон:Cite journal
  128. Шаблон:Cite journal
  129. Шаблон:Cite journal
  130. Шаблон:Cite journal
  131. Шаблон:Cite journal
  132. Шаблон:Cite journal
  133. Шаблон:Cite journal
  134. Шаблон:Cite journal
  135. Шаблон:Cite journal
  136. Шаблон:Cite journal
  137. Шаблон:Cite journal
  138. Шаблон:Cite journal
  139. Шаблон:Cite journal
  140. Шаблон:Cite journal
  141. 141,0 141,1 Шаблон:Cite journal
  142. Шаблон:Cite journal
  143. Шаблон:Cite journal
  144. Шаблон:Cite journal
  145. Шаблон:Cite journal
  146. Шаблон:Cite journal
  147. 147,0 147,1 147,2 Шаблон:Cite journal
  148. Шаблон:Cite journal
  149. Шаблон:Cite journal
  150. Шаблон:Cite journal
  151. Шаблон:Cite journal
  152. Шаблон:Cite journal
  153. Шаблон:Cite journal
  154. Шаблон:Cite journal
  155. Шаблон:Cite journal
  156. Шаблон:Cite journal
  157. Шаблон:Cite journal
  158. Шаблон:Cite journal
  159. Шаблон:Cite journal
  160. Шаблон:Cite journal
  161. Шаблон:Cite journal
  162. Шаблон:Cite journal
  163. Шаблон:Cite journal
  164. Шаблон:Cite journal
  165. Шаблон:Cite journal
  166. Шаблон:Cite news
  167. Шаблон:Cite news
  168. Шаблон:Cite journal Файл:CC-BY icon.svg Text and images are available under a Creative Commons Attribution 4.0 International License.
  169. Шаблон:Cite journal
  170. Шаблон:Cite journal
  171. Шаблон:Cite journal
  172. Шаблон:Cite journal
  173. Шаблон:Cite journal
  174. Шаблон:Cite journal
  175. Шаблон:Cite journal
  176. Шаблон:Cite journal
  177. Шаблон:Cite journal
  178. Шаблон:Cite journal
  179. 179,00 179,01 179,02 179,03 179,04 179,05 179,06 179,07 179,08 179,09 179,10 Шаблон:Cite journal
  180. Шаблон:Cite journal
  181. Шаблон:Cite journal
  182. Шаблон:Cite journal
  183. Шаблон:Cite journal
  184. Шаблон:Cite journal
  185. Шаблон:Cite journal
  186. Шаблон:Cite journal
  187. 187,0 187,1 Шаблон:Cite book
  188. Шаблон:Cite journal
  189. Шаблон:Cite journal
  190. Шаблон:Cite journal
  191. 191,0 191,1 Шаблон:Cite journal
  192. Шаблон:Cite journal
  193. Шаблон:Cite journal
  194. Шаблон:Cite journal
  195. Шаблон:Cite journal
  196. Шаблон:Cite journal
  197. Шаблон:Cite journal
  198. Шаблон:Cite journal
  199. 199,0 199,1 Шаблон:Cite journal
  200. Шаблон:Cite journal
  201. Шаблон:Cite journal
  202. Шаблон:Cite journal
  203. Шаблон:Cite journal
  204. Шаблон:Cite journal
  205. Шаблон:Cite journal
  206. Шаблон:Cite journal
  207. Шаблон:Cite journal
  208. Шаблон:Cite journal
  209. Шаблон:Cite journal
  210. Шаблон:Cite journal
  211. Шаблон:Cite journal
  212. Шаблон:Cite journal
  213. Шаблон:Cite journal
  214. Шаблон:Cite journal
  215. Шаблон:Cite journal
  216. Шаблон:Cite journal
  217. Шаблон:Cite journal
  218. Шаблон:Cite journal
  219. Шаблон:Cite journal
  220. Шаблон:Cite journal
  221. 221,0 221,1 221,2 221,3 221,4 Шаблон:Cite journal
  222. 222,0 222,1 222,2 222,3 222,4 222,5 Шаблон:Cite journal
  223. Шаблон:Cite journal
  224. Шаблон:Cite journal
  225. Шаблон:Cite journal
  226. 226,0 226,1 226,2 226,3 226,4 Шаблон:Cite journal
  227. Шаблон:Cite journal
  228. Шаблон:Cite journal
  229. Шаблон:Cite journal
  230. Шаблон:Cite journal
  231. 231,0 231,1 231,2 231,3 231,4 Шаблон:Cite journal
  232. Шаблон:Cite journal
  233. Шаблон:Cite journal
  234. 234,0 234,1 Шаблон:Cite journal
  235. 235,0 235,1 Шаблон:Cite journal
  236. 236,0 236,1 Шаблон:Cite journal
  237. Шаблон:Cite journal
  238. Шаблон:Cite journal
  239. Шаблон:Cite journal
  240. 240,0 240,1 Шаблон:Cite journal
  241. Шаблон:Cite journal
  242. Шаблон:Cite journal
  243. Шаблон:Cite journal
  244. Шаблон:Cite journal
  245. Шаблон:Cite journal
  246. Шаблон:Cite journal
  247. 247,0 247,1 Шаблон:Cite journal
  248. Шаблон:Cite journal
  249. Шаблон:Cite journal
  250. Шаблон:Cite journal
  251. Шаблон:Cite journal
  252. Шаблон:Cite journal
  253. Шаблон:Cite journal
  254. Шаблон:Cite journal
  255. Шаблон:Cite journal
  256. Шаблон:Cite journal
  257. Шаблон:Cite journal
  258. Шаблон:Cite journal
  259. Шаблон:Cite journal
  260. Шаблон:Cite journal
  261. Шаблон:Cite journal
  262. Шаблон:Cite journal
  263. Шаблон:Cite journal
  264. Шаблон:Cite journal
  265. Шаблон:Cite journal
  266. Шаблон:Cite journal
  267. Шаблон:Cite journal
  268. Шаблон:Cite journal
  269. Шаблон:Cite journal
  270. Шаблон:Cite journal
  271. Шаблон:Cite journal
  272. Шаблон:Cite journal
  273. Шаблон:Cite journal
  274. Шаблон:Cite journal
  275. Шаблон:Cite journal
  276. Шаблон:Cite journal
  277. Шаблон:Cite journal
  278. Шаблон:Cite journal
  279. Шаблон:Cite journal
  280. Шаблон:Cite journal
  281. Шаблон:Cite journal
  282. Шаблон:Cite journal
  283. Шаблон:Cite journal
  284. Шаблон:Cite journal
  285. Шаблон:Cite journal
  286. Шаблон:Cite journal
  287. Шаблон:Cite journal
  288. Шаблон:Cite journal
  289. Шаблон:Cite journal
  290. Шаблон:Cite journal
  291. Шаблон:Cite journal
  292. Шаблон:Cite journal
  293. Шаблон:Cite journal
  294. Шаблон:Cite journal
  295. Шаблон:Cite journal
  296. Шаблон:Cite journal
  297. Шаблон:Cite journal
  298. Шаблон:Cite journal
  299. Шаблон:Cite journal
  300. Шаблон:Cite journal
  301. Шаблон:Cite journal
  302. Шаблон:Cite journal
  303. Шаблон:Cite journal
  304. Шаблон:Cite journal
  305. Шаблон:Cite journal
  306. Шаблон:Cite journal
  307. Шаблон:Cite journal
  308. Шаблон:Cite journal
  309. Шаблон:Cite journal
  310. Шаблон:Cite journal
  311. Шаблон:Cite journal
  312. Шаблон:Cite journal
  313. Шаблон:Cite journal
  314. Шаблон:Cite journal
  315. Шаблон:Cite journal
  316. Шаблон:Cite journal
  317. Шаблон:Cite journal
  318. Шаблон:Cite journal
  319. Шаблон:Cite journal
  320. Шаблон:Cite journal
  321. Шаблон:Cite news
  322. Шаблон:Cite journal
  323. Шаблон:Cite journal
  324. Шаблон:Cite journal
  325. Шаблон:Cite journal
  326. Шаблон:Cite journal
  327. Шаблон:Cite journal
  328. Шаблон:Cite journal
  329. Шаблон:Cite journal
  330. Шаблон:Cite journal
  331. Шаблон:Cite journal
  332. Шаблон:Cite journal
  333. Шаблон:Cite journal
  334. Шаблон:Cite journal
  335. Шаблон:Cite journal
  336. Шаблон:Cite journal
  337. Шаблон:Cite journal
  338. Шаблон:Cite journal
  339. Шаблон:Cite journal
  340. Шаблон:Cite journal
  341. Шаблон:Cite journal
  342. Шаблон:Cite journal
  343. Шаблон:Cite journal
  344. Шаблон:Cite journal
  345. Шаблон:Cite journal
  346. Шаблон:Cite journal
  347. Шаблон:Cite journal
  348. Шаблон:Cite journal
  349. Шаблон:Cite journal
  350. Шаблон:Cite journal
  351. Шаблон:Cite journal
  352. Шаблон:Cite journal
  353. Шаблон:Cite journal
  354. Шаблон:Cite journal
  355. Шаблон:Cite journal
  356. Шаблон:Cite journal
  357. Шаблон:Cite journal
  358. Шаблон:Cite journal
  359. Шаблон:Cite journal
  360. Шаблон:Cite journal
  361. Шаблон:Cite journal
  362. Шаблон:Cite journal
  363. Шаблон:Cite journal
  364. Шаблон:Cite journal
  365. Шаблон:Cite journal
  366. Шаблон:Cite journal
  367. Шаблон:Cite journal
  368. Шаблон:Cite journal
  369. Шаблон:Cite journal
  370. Шаблон:Cite journal
  371. Шаблон:Cite journal
  372. Шаблон:Cite journal
  373. Шаблон:Cite journal
  374. Шаблон:Cite journal
  375. Шаблон:Cite journal
  376. Шаблон:Cite journal