Английская Википедия:2021 in paleontology

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Year nav topic20 Шаблон:Year in paleontology header Шаблон:Science year nav

Flora

Plants

Шаблон:Main

Fungi

New taxa

Name Novelty Status Authors Age Type locality Location Notes Images

Allocordyceps[1]

Gen. et sp. nov

In press

Poinar & Maltier

Eocene

Baltic amber

Europe (Baltic Sea region)

A fungus belonging to the group Hypocreales and the family Clavicipitaceae. Genus includes new species A. baltica.

Bleximothyrium[2]

Gen. et sp. nov

Valid

Le Renard et al.

Early Cretaceous (Aptian)

Potomac Group

Шаблон:Flag
(Шаблон:Flag)

A dothideomycete fly-speck fungus. Type species B. ostiolatum.

Chaenothecopsis polissica[3]

Sp. nov

Valid

Heluta & Sukhomlyn in Sukhomlyn et al.

Late Eocene

Rovno amber

Шаблон:Flag

A species of Chaenothecopsis.

Columnomyces electri[4]

Sp. nov

Valid

Haelewaters & Perreau in Perreau, Haelewaters & Tafforeau

Miocene

Dominican amber

Шаблон:Flag

A laboulbeniale fungus,
parasitic on the beetle Proptomaphaginus alleni.

Glomites oqoti[5]

Sp. nov

In press

Lalica & Tomescu

Devonian (Emsian)

Battery Point Formation

Шаблон:Flag
(Шаблон:Flag)

Spores with affinities to the Glomeromycotina.

Meliolinites scanicus[6]

Sp. nov

In press

McLoughlin et al.

Late Cretaceous (Santonian–early Campanian)

Шаблон:Flag

A member of the family Meliolaceae.

Nyssopsora eocaenica[7]

Sp. nov

Valid

Tykhonenko & Hayova in Tykhonenko et al.

Middle Eocene

Naibuchi Formation
(Sakhalinian amber)

Шаблон:Flag
(Шаблон:Flag)

A member of Pucciniales.

Rhizophydites[8]

Gen. et sp. nov

Valid

Krings, Serbet & Harper

Early Devonian

Rhynie chert

Шаблон:Flag

A Chytridiomycotan fungus. Type species R. matryoshkae.

Stomatothyrium[9]

Gen. et sp. nov

Valid

Le Renard et al.

Early Cretaceous (Aptian)

Potomac Group

Шаблон:Flag
(Шаблон:Flag)

A member of Dothideomycetes. Genus includes new species S. placocentrum.

Stomiopeltites ivoeensis[6]

Sp. nov

In press

McLoughlin et al.

Late Cretaceous (Santonian–early Campanian)

Шаблон:Flag

A member of the family Micropeltidaceae.

Yongnicta[10]

Gen. et sp. nov

In press

Tobias & Maslova in Xu et al.

Late Oligocene

Yongning Formation

Шаблон:Flag

A member of Ascomycota described on the basis of fungal fruiting bodies preserved on fossil tupelo endocarps. Genus includes new species Y. nyssae.

Research

  • Exceptionally preserved specimens of Tawuia, providing new information on the anatomy of this organism, are described from the Tonian Liulaobei and Shiwangzhuang formations (China) by Tang et al. (2021), who interpret Tawuia as a coenocytic eukaryote, possibly a macroalga.[11]
  • Microfossils which may represent early terrestrial fungi are described from the Ediacaran Doushantuo Formation (China) by Gan et al. (2021).[12]
  • A Rhynie chert fossil Mycokidstonia sphaerialoides, originally interpreted as an ascomycete, is reclassified as a member of Glomeromycota belonging to the family Ambisporaceae by Walker et al. (2021).[13]
  • Carboniferous organism Oochytrium lepidodendri, originally classified as a fungus, is reinterpreted as an oomycete by Strullu-Derrien et al. (2021).[14]
  • Probable fossils of multicellular eukaryotic macroalgae (possibly with a green algal affinity) are described from the Tonian Dolores Creek Formation in the Wernecke Mountains (Canada) by Maloney et al. (2021), who interpret these fossils as likely to be some of the few green algae and some of the largest macroscopic eukaryotes yet recognized in the early Neoproterozoic, indicating that eukaryotic algae colonized marine environments by the early Neoproterozoic.[15]
  • Fossil material of macroalgae, providing information on the early evolution of holdfast morphologies and attachment strategies of benthic macroalgae, is described from the Ediacaran Lantian biota and Miaohe biota (China) by Wang et al. (2021).[16]

Cnidarians

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Agastophyllum parvum[17]

Sp. nov

Valid

McLean

Devonian

A rugose coral belonging to family Cystiphyllidae.

Ankhelasma canadense[18]

Sp. nov

In press

Chwieduk

Carboniferous (Viséan)

Flett Formation

Шаблон:Flag

A rugose coral belonging to the group Stauriida and the family Zaphrentoididae.

Apocladophyllia guigouensis[19]

Sp. nov

Valid

Vasseur & Lathuilière

Early Jurassic (Pliensbachian)

Шаблон:Flag

A stony coral belonging to the family Cladophylliidae.

Apoplacophyllia asiatica[20]

Sp. nov

Valid

Baron-Szabo

Early Cretaceous (Albian)

Langshan Formation

Шаблон:Flag

A stony coral belonging to the family Heterocoeniidae.

Axosmilia amellagouensis[19]

Sp. nov

Valid

Vasseur & Lathuilière

Early Jurassic (Pliensbachian)

Шаблон:Flag

A stony coral belonging to the family Axosmiliidae.

Balkhanomeandra[21]

Gen. et sp. nov

Valid

Bugrova

Early Cretaceous

Шаблон:Flag
Шаблон:Flag

A stony coral belonging to the family Latomeandridae. The type species is B. roniewiczae.

Calcariastraea[22]

Gen. et comb. nov

Valid

McLean & Wright

Devonian

Шаблон:Flag

A rugose coral. The type species is "Phillipsastrea" currani Etheridge; genus also includes "P." speciosa Chapman, "P." maculosa Hill, "P." linearis Hill and "P." oculoides Hill.

Cantabriastraea orourkei[22]

Sp. nov

Valid

McLean & Wright

A rugose coral.

Catenatus[23]

Gen. et sp. nov

Valid

Carrera et al.

Ordovician (FloianDarriwilian)

San Juan Formation

Шаблон:Flag

A member of Octocorallia, possibly belonging to the group Alcyonacea. The type species is C. argentinus.

Cladochonus nagatoensis[24]

Sp. nov

Valid

Niko

Early Carboniferous

Шаблон:Flag

A tabulate coral.

Columnocoenia falkenbergensis[25]

Sp. nov

Valid

Baron-Szabo

Early Cretaceous (Aptian)

Schrattenkalk Formation

Шаблон:Flag
Шаблон:Flag

A stony coral.

Confusaforma prima[26]

Sp. nov

Valid

Löser in Löser et al.

Early Cretaceous (Valanginian)

Sierra del Pozo Formation

Шаблон:Flag

A coral belonging to the family Solenocoeniidae.

Cordilleria[27]

Gen. et comb. nov

Valid

Fedorowski, Bamber & Richards

Carboniferous (Mississippian)

Lower Rundle Group

Шаблон:Flag
Шаблон:Flag

A rugose coral belonging to the group Stauriida and the family Lithostrotionidae. The type species is "Diphyphyllum" mutabile Kelly (1942); genus also includes "Lithostrotion" flexuosum Warren (1927), "Lithostrotion (Siphonodendron)" warreni Nelson (1960) and "Lithostrotion (Siphonodendron)" oculinum Sando (1963).

Coryphyllia bicuneiformis[19]

Sp. nov

Valid

Vasseur & Lathuilière

Early Jurassic (Pliensbachian)

Шаблон:Flag

A stony coral belonging to the family Coryphylliidae.

Coryphyllia capillaria[19]

Sp. nov

Valid

Vasseur & Lathuilière

Early Jurassic (Pliensbachian)

Шаблон:Flag
Шаблон:Flag

A stony coral belonging to the family Coryphylliidae.

Crebriphyllum[22]

Gen. et comb. et 3 sp. nov

Valid

McLean & Wright

Devonian

Шаблон:Flag

A rugose coral. The type species is "Phillipsastrea" callosa Hill; genus also includes new species C. duni, C. jelli and C. struszi.

Cyathoclisia sukhensis[28]

Sp. nov

Valid

Ohar & Denayer

Carboniferous (Viséan)

Шаблон:Flag

A rugose coral belonging to the family Aulophyllidae.

Cystiphylloides calnanense[17]

Sp. nov

Valid

McLean

Devonian

A rugose coral belonging to family Cystiphyllidae.

Cystiphylloides tetsaense[17]

Sp. nov

Valid

McLean

Devonian

A rugose coral belonging to family Cystiphyllidae.

Cystiplasma curraense[17]

Sp. nov

Valid

McLean

Devonian

A rugose coral belonging to family Cystiphyllidae.

Decimoconularia[29]

Gen. et sp. nov

Valid

Guo et al.

Cambrian Stage 2

Yanjiahe Formation

Шаблон:Flag

A hexangulaconulariid. Genus includes new species D. isofacialis.

Digonophyllum clarkense[17]

Sp. nov

Valid

McLean

Devonian

A rugose coral belonging to family Cystiphyllidae.

Distichophyllia pauciseptata[19]

Sp. nov

Valid

Vasseur & Lathuilière

Early Jurassic (Pliensbachian)

Шаблон:Flag

A stony coral belonging to the family Reimaniphylliidae.

Ekvasophyllum variabilis[18]

Sp. nov

In press

Chwieduk

Carboniferous (Viséan)

Flett Formation

Шаблон:Flag

A rugose coral belonging to the group Stauriida and the family Ekvasophyllidae.

Eopreverastrea[26]

Gen. et sp. nov

Valid

Löser in Löser et al.

Early Cretaceous (Valanginian)

Sierra del Pozo Formation

Шаблон:Flag

A coral belonging to the family Aulastraeoporidae. The type species is E. llanoensis.

Epismiliopsis paraeudesi[19]

Sp. nov

Valid

Vasseur & Lathuilière

Early Jurassic (Pliensbachian)

Шаблон:Flag

A stony coral belonging to the family Stylophyllidae.

Favia misakiensis[30]

Sp. nov

Valid

Niko & Suzuki

Miocene

Katsuta Group

Шаблон:Flag

A species of Favia.

Floriastrea iberica[26]

Sp. nov

Valid

Löser in Löser et al.

Early Cretaceous (Valanginian)

Sierra del Pozo Formation

Шаблон:Flag

A coral belonging to the family Actinastreidae.

Fungiaphyllia praecursor[19]

Sp. nov

Valid

Vasseur & Lathuilière

Early Jurassic (Pliensbachian)

Шаблон:Flag

A stony coral belonging to the family Deltocyathiidae.

Fungiaphyllia rotunda[19]

Sp. nov

Valid

Vasseur & Lathuilière

Early Jurassic (Pliensbachian)

Шаблон:Flag

A stony coral belonging to the family Deltocyathiidae.

Gyrosmilia maltensis[31]

Sp. nov

Valid

Saint Martin et al.

Oligocene (Chattian)

Lower Coralline Limestone

Шаблон:Flag

A species of Gyrosmilia.

Julfamichelinia[32]

Gen. et comb. nov

Valid

Niko & Badpa

Permian (Wuchiapingian)

Dzhulfa Formation

Шаблон:Flag
Шаблон:Flag
Шаблон:Flag
Шаблон:Flag?

A tabulate coral belonging to the family Micheliniidae. The type species is "Michelinopora" allata Tchudinova in Ruzhentsev & Sarycheva (1965).

Kluaphyllum[17]

Gen. et sp. nov

Valid

McLean

Devonian

A rugose coral belonging to family Cystiphyllidae. Genus includes new species K. sulcatum.

Lekanophyllum nordlingense[17]

Sp. nov

Valid

McLean

Devonian

A rugose coral belonging to family Cystiphyllidae.

Lekanophyllum robbense[17]

Sp. nov

Valid

McLean

Devonian

A rugose coral belonging to family Cystiphyllidae.

Loboplasma sutchersense[17]

Sp. nov

Valid

McLean & Wright in McLean

Devonian

A rugose coral belonging to family Cystiphyllidae.

Margarosmilia dividenda[19]

Sp. nov

Valid

Vasseur & Lathuilière

Early Jurassic (Pliensbachian)

Шаблон:Flag

A stony coral belonging to the family Margarophylliidae.

Microplasma fromense[17]

Sp. nov

Valid

McLean & Wright in McLean

Devonian

A rugose coral belonging to family Cystiphyllidae.

Microplasma hedingeri[17]

Sp. nov

Valid

McLean

Devonian

A rugose coral belonging to family Cystiphyllidae.

Microplasma nabeschense[17]

Sp. nov

Valid

McLean

Devonian

A rugose coral belonging to family Cystiphyllidae.

Miophora naxxarensis[31]

Sp. nov

Valid

Saint Martin et al.

Oligocene (Chattian)

Lower Coralline Limestone

Шаблон:Flag

A stony coral.

Monopachyphyllia[33]

Gen. et sp. nov

Valid

Kołodziej & Marian

Early Cretaceous (Aptian)

Шаблон:Flag

A colonial coral belonging to the group Pachythecaliina, possibly belonging to the superfamily Heterocoenioidea and the family Carolastraeidae. Genus includes new species M. roniewiczae.

Nailiana[34]

Gen. et sp. nov

Valid

Ou & Shu in Ou et al.

Cambrian Stage 3

Heilinpu Formation

Шаблон:Flag

An early anthozoan. The type species is N. elegans.

Nardophyllum cavanense[17]

Sp. nov

Valid

McLean

Devonian

A rugose coral belonging to family Cystiphyllidae.

Nerthastraea maltensis[31]

Sp. nov

Valid

Saint Martin et al.

Oligocene (Chattian)

Lower Coralline Limestone

Шаблон:Flag

A stony coral.

Ogmophylloides[17]

Gen. et sp. nov

Valid

McLean

Devonian

A rugose coral belonging to family Cystiphyllidae. Genus includes new species O. taylori.

Palaeodiphasia[35]

Gen et comb. nov

Valid

Song et al.

Late Cambrian

Fengshan Formation

Шаблон:Flag

A member of Leptothecata belonging to the group Macrocolonia; a new genus for "Siberiograptus" simplex Lin (1985).

Paraconularia abagaensis[36]

Sp. nov

In press

Min et al.

Permian

Шаблон:Flag

A conulariid.

Paravolzeia calabrensis[19]

Sp. nov

Valid

Vasseur & Lathuilière

Early Jurassic (Pliensbachian)

Шаблон:Flag

A stony coral belonging to the family Protoheterastraeidae.

Phacelostylophyllum arbustulum[19]

Sp. nov

Valid

Vasseur & Lathuilière

Early Jurassic (Pliensbachian)

Шаблон:Flag

A stony coral belonging to the family Stylophyllidae.

Phillipsastrea chapmani[22]

Sp. nov

Valid

McLean & Wright

Devonian (Pragian)

Шаблон:Flag

A rugose coral.

Phillipsastrea mcraeorum[22]

Sp. nov

Valid

McLean & Wright

A rugose coral.

Phillipsastrea pedderi[22]

Sp. nov

Valid

McLean & Wright

A rugose coral.

Podosmilia[19]

Gen. et sp. nov

Valid

Vasseur & Lathuilière

Early Jurassic (Pliensbachian)

Шаблон:Flag
Шаблон:Flag

A stony coral belonging to the family Stylophyllidae. The type species is P. horologium.

Prismastrea[19]

Gen. et sp. nov

Valid

Vasseur & Lathuilière

Early Jurassic (Pliensbachian)

Шаблон:Flag

A stony coral belonging to the family Thecosmiliidae. The type species is P. organum.

Proleptophyllia calix[19]

Sp. nov

Valid

Vasseur & Lathuilière

Early Jurassic (Pliensbachian)

Шаблон:Flag

A stony coral belonging to the family Dermosmiliidae.

Proleptophyllia magna[19]

Sp. nov

Valid

Vasseur & Lathuilière

Early Jurassic (Pliensbachian)

Шаблон:Flag

A stony coral belonging to the family Dermosmiliidae.

Proleptophyllia subphaceloida[19]

Sp. nov

Valid

Vasseur & Lathuilière

Early Jurassic (Pliensbachian)

Шаблон:Flag

A stony coral belonging to the family Dermosmiliidae.

Retiophyllia zizensis[19]

Sp. nov

Valid

Vasseur & Lathuilière

Early Jurassic (Pliensbachian)

Шаблон:Flag

A stony coral belonging to the family Reimaniphylliidae.

Siderohelia[37]

Gen. et sp. nov

Valid

Löser in Löser et al.

Cretaceous (Hauterivian to Santonian)

Шаблон:Flag

A stony coral belonging to the family Rhizangiidae. The type species is S. aquilai.

Spongiocoenia[19]

Gen. et comb. nov

Valid

Vasseur & Lathuilière

Early Jurassic (Sinemurian-Pliensbachian)

Шаблон:Flag

A stony coral of uncertain affinities. The type species is "Coccophyllum" liasicum Turnšek & Geyer in Turnšek, Seyfried & Geyer (1975).

Stylophyllopsis bovista[19]

Sp. nov

Valid

Vasseur & Lathuilière

Early Jurassic (Pliensbachian)

Шаблон:Flag

A stony coral belonging to the family Stylophyllidae.

Stylophyllopsis veracolumella[19]

Sp. nov

Valid

Vasseur & Lathuilière

Early Jurassic (Pliensbachian)

Шаблон:Flag

A stony coral belonging to the family Stylophyllidae.

Sutherlandia khachikensis[32]

Sp. nov

Valid

Niko & Badpa

Permian (Capitanian)

Khachik Formation

Шаблон:Flag

A tabulate coral belonging to the family Favositidae.

Trigerastraea sikharulidzeae[20]

Sp. nov

Valid

Baron-Szabo

Early Cretaceous (Albian)

Шаблон:Flag

A stony coral belonging to the family Latomeandridae.

Tropalicystis[17]

Gen. nov

Valid

McLean

Devonian

A rugose coral belonging to family Cystiphyllidae.

Tubulosmilia[19]

Gen. et sp. nov

Valid

Vasseur & Lathuilière

Early Jurassic (Pliensbachian)

Шаблон:Flag

A stony coral belonging to the family Stylophyllidae. The type species is T. regularis.

Variocystis[17]

Gen. et sp. nov

Valid

McLean

Devonian

A rugose coral belonging to family Cystiphyllidae. Genus includes new species V. caribouensis.

Research

  • Anatomical evidence indicative of a close relationship between cloudinids and Cambrian animals with cnidarian affinities: Cambroctoconus, Lipopora and Tretocylichne is published by Park et al. (2021).[38]
  • A study on the morphology, embryonic development and phylogenetic relationships of Quadrapyrgites is published by Zhao et al. (2021), who interpret this taxon and its probable relative Olivooides as more likely to be diploblastic cnidarians than triploblastic cycloneuralians.[39]
  • An exceptionally preserved conulariid specimen, keeping its aperture semi-closed and making it possible to see most of the internal part of the closure with rib continuation inwards, is described from the Ordovician of southeastern Brandenburg (Germany) by Sendino & Bochmann (2021).[40]
  • Revision of Palaenigma wrangeli is published by Kröger et al. (2021), who argue that this organism can be best interpreted as a conulariid, and name a new family Palaenigmaidae.[41]
  • A study on the earliest growth stages and branching process in specimens of Oligophylloides from the Devonian (Famennian) of Morocco, and on the implications of these specimens for the knowledge of the phylogenetic relationships of Heterocorallia, is published by Berkowski et al. (2021).[42]

Arthropods

Шаблон:Main

Bryozoans

New taxa

Name Novelty Status Authors Age Type locality Location Notes Images

Acoscinopleura beniamovski[43]

Sp. nov

Valid

Koromyslova, Taylor & Pakhnevich

Late Cretaceous (Maastrichtian)

Шаблон:Flag

A cheilostome bryozoan.

Antropora guajirensis[44]

Sp. nov

Valid

Flórez, Di Martino & Ramalho

Early Miocene

Siamaná Formation

Шаблон:Flag

A species of Antropora.

Atoichos[44]

Gen. et sp. nov

Valid

Flórez, Di Martino & Ramalho

Early Miocene

Siamaná Formation

Шаблон:Flag

A member of the family Onychocellidae. The type species is A. magnus.

Calpensia caribensis[44]

Sp. nov

Valid

Flórez, Di Martino & Ramalho

Early Miocene

Siamaná Formation

Шаблон:Flag

A member of the family Microporidae.

Conopeum flumineum[45]

Sp. nov

Valid

Taylor & Rogers

Late Cretaceous (Campanian)

Judith River Formation

Шаблон:Flag
(Шаблон:Flag)

A species of Conopeum.

Cribrilaria multicostata[44]

Sp. nov

Valid

Flórez, Di Martino & Ramalho

Early Miocene

Siamaná Formation

Шаблон:Flag

A member of the family Cribrilinidae.

Cribrilaria nixor[44]

Sp. nov

Valid

Flórez, Di Martino & Ramalho

Early Miocene

Siamaná Formation

Шаблон:Flag

A member of the family Cribrilinidae.

Cycloavicularia[46]

Gen. et sp. nov

Valid

Flórez, Di Martino & Ramalho

Early Miocene

Siamaná Formation

Шаблон:Flag

A member of the family Teuchoporidae. The type species C. parva.

Ditaxiporina colombiana[46]

Sp. nov

Valid

Flórez, Di Martino & Ramalho

Early Miocene

Siamaná Formation

Шаблон:Flag

A member of the family Catenicellidae.

Escharifora? invisibilia[43]

Sp. nov

Valid

Koromyslova, Taylor & Pakhnevich

Late Cretaceous (Maastrichtian)

Шаблон:Flag

A cheilostome bryozoan.

Figularia bragai[44]

Sp. nov

Valid

Flórez, Di Martino & Ramalho

Early Miocene

Siamaná Formation

Шаблон:Flag

Figularia elcanoi[47]

Sp. nov

Valid

López-Gappa et al.

Early Miocene

Шаблон:Flag

A member of Cheilostomatida.

Gymnophorella[44]

Gen. et sp. nov

Valid

Flórez, Di Martino & Ramalho

Early Miocene

Siamaná Formation

Шаблон:Flag

A member of the family Steginoporellidae. The type species is G. hadra.

Jolietina victoria[47]

Sp. nov

Valid

López-Gappa et al.

Early Miocene

Шаблон:Flag

A member of Cheilostomatida.

Parafigularia pigafettai[47]

Sp. nov

Valid

López-Gappa et al.

Early Miocene

Шаблон:Flag

A member of Cheilostomatida.

Poricella paulae[46]

Sp. nov

Valid

Flórez, Di Martino & Ramalho

Early Miocene

Siamaná Formation

Шаблон:Flag

A member of the family Arachnopusiidae.

Research

  • Protomelission gatehousei is reinterpreted as a potential stem-group bryozoan by Zhang et al. (2021).[48]
  • A study on the evolutionary history of cyclostome and cheilostome bryozoans over the past 150 million years, focusing on causes of cheilostome taxonomic richness surpassing the richness of once dominant cyclostomes, is published by Lidgard et al. (2021).[49]

Brachiopods

New taxa

Name Novelty Status Authors Age Type locality Location Notes Images

?Becscia pentagona[50]

Sp. nov

Valid

Baarli

Solvik Formation

Шаблон:Flag

Bellistrophia askarensis[51]

Sp. nov

Valid

Popov & Nikitina in Popov et al.

Cambrian (Wuliuan)

Athei Formation

Шаблон:Flag

A kutorginide brachiopod.

Carinagypa robecki[52]

Sp. nov

Valid

Blodgett et al.

Devonian (Emsian)

Шаблон:Flag
(Шаблон:Flag)

A member of Pentamerida belonging to the family Gypidulidae.

Crinisarina pseudoglobularis[53]

Sp. nov

Valid

Serobyan et al.

Devonian (Famennian)

Шаблон:Flag

An athyride brachiopod.

Eisaella[50]

Gen. et sp. nov

Valid

Baarli

Solvik Formation

Шаблон:Flag

Genus includes new species E. uniplicata.

Eoconulus tucunucoensis[54]

Sp. nov

Valid

Lavié, Mestre & Carrera

Ordovician

San Juan Formation

Шаблон:Flag

An acrotretid brachiopod.

Ferronirhynchia[55]

Gen. et sp. nov

Valid

García-Alcalde

Devonian (Emsian)

Moniello Formation

Шаблон:Flag

A member of Rhynchonellida belonging to the family Trigonirhynchiidae. The type species is F. pulgari.

Kermanirhyncha[56]

Gen. et sp. nov

Valid

Popov et al.

Silurian (Aeronian)

Shabdjereh Formation

Шаблон:Flag

A rhynchonellide brachiopod. Genus includes new species K. granulata.

Levanispirifer[56]

Gen. et sp. nov

Valid

Popov et al.

Silurian (Aeronian)

Shabdjereh Formation

Шаблон:Flag

A spiriferide brachiopod. Genus includes new species L. alatus.

Longtancunella xiazhuangensis[57]

Sp. nov

In press

Wang et al.

Cambrian Stage 3

Hongjingshao Formation

Шаблон:Flag

Luthieria[54]

Gen. et sp. nov

Valid

Lavié, Mestre & Carrera

Ordovician

San Juan Formation

Шаблон:Flag

An obolid brachiopod. Genus includes new species L. diminuta.

Mictospirifer obtusus[56]

Sp. nov

Valid

Popov et al.

Silurian (Aeronian)

Shabdjereh Formation

Шаблон:Flag

A spiriferide brachiopod.

Orbiculoidea verum[58]

Sp. nov

Valid

Masunaga & Shiino

Middle Permian

Hoso-o Formation

Шаблон:Flag

Paterula (?) vasilievae[59]

Sp. nov

Valid

Smirnova & Zhegallo

Devonian (Frasnian)

Шаблон:Flag

A member of Linguloidea belonging to the family Paterulidae.

Psiloria karasuensis[51]

Sp. nov

Valid

Popov & Nikitina in Popov et al.

Cambrian (Wuliuan)

Athei Formation

Шаблон:Flag

A protorthide brachiopod.

Schellwienella clarkei[60]

Sp. nov

Valid

Rezende & Isaacson

Devonian

Ponta Grossa Formation

Шаблон:Flag

A member of Orthotetida.

Sepkoskirhynchia[61]

Gen. et sp. nov

In press

Radulović

Early Jurassic (Pliensbachian)

Шаблон:Flag

A rhynchonellide brachiopod belonging to the family Basiliolidae. Genus includes new species S. sphaerica.

Shelvothyris bivittata[50]

Sp. nov

Valid

Baarli

Solvik Formation

Шаблон:Flag

Thulatrypa huangi[50]

Sp. nov

Valid

Baarli

Solvik Formation

Шаблон:Flag

Thulatrypa vikenensis[50]

Sp. nov

Valid

Baarli

Solvik Formation

Шаблон:Flag

Xanastur[62]

Nom. nov

Valid

García-Alcalde

Early Devonian

Шаблон:Flag

A terebratulid brachiopod; a replacement name for Xana García-Alcalde (1972).

Xinjiangiproductus? junggarensis[63]

Sp. nov

In press

Guo, Chen & Liao

Early Carboniferous

Hongshanzui Formation

Шаблон:Flag

Research

  • Revision and a study on the biogeography of brachiopod faunas from the Early Ordovician Mediterranean Province is published by Cocks & Popov (2021).[64]
  • A study on the evolution of the strophomenoid brachiopods, aiming to determine whether environmental changes at the time of the Great Ordovician Biodiversification Event correlated with the diversification of this group, is published by Congreve, Patzkowsky & Wagner (2021).[65]
  • A study on the selectivity of extinction of rhynchonelliform brachiopods from the Appalachian Foreland Basin during the two pulses of the Frasnian–Famennian mass extinction, aiming to determine the primary kill mechanism in this fauna, is published by Pier et al. (2021).[66]
  • A study on the phylogenetic relationships and evolutionary history of late Permian and Triassic rhynchonellides is published by Guo et al. (2021).[67]

Molluscs

Шаблон:Main

Echinoderms

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Amphoracrinus tenax[68]

Sp. nov

Valid

Ausich et al.

Carboniferous (Viséan)

Borden Formation

Шаблон:Flag
(Шаблон:Flag)

A monobathrid camerate belonging to the family Amphoracrinidae.

Archiacia ramitaensis[69]

Sp. nov

Valid

Néraudeau & Mouty

Late Cretaceous (Cenomanian)

Шаблон:Flag

A sea urchin belonging to the family Archiaciidae.

Barbaraster[70]

Gen. et 2 sp. nov

Valid

Thuy & Numberger-Thuy

Early Jurassic (Toarcian)

Posidonia Shale

Шаблон:Flag

A brittle star belonging to the group Ophiurida. The type species is B. colbachi; genus also includes B. muenzbergerae.

Boxaster[71]

Gen. et sp. nov

In press

Loba & Radwańska

Late Jurassic (Kimmeridgian)

Шаблон:Flag

A starfish belonging to the group Paxillosida, possibly a member of the family Astropectinidae. The type species is B. wapienensis.

Bulbosphaeraster[72]

Gen. et sp. nov

Valid

Gale

Middle Jurassic (Bathonian)

Шаблон:Flag

A starfish belonging to the family Sphaerasteridae. The type species is B. valettei.

Calvaticrinus[73]

Gen. et comb. nov

In press

Gale & Matrion

Early Cretaceous (Albian)

Шаблон:Flag
Шаблон:Flag

A microcrinoid belonging to the family Roveacrinidae. The type species is "Plotocrinus" monocarinatus Destombes (1984); genus also includes C. subplanatus (Destombes, 1984) and "Discocrinus integer Hess (2010).

Cantabrigiaster[74]

Gen. et sp. nov

Disputed

Hunter & Ortega-Hernández

Early Ordovician

Fezouata Formation

Шаблон:Flag

A somasteroid asterozoan. The type species is C. fezouataensis. Blake & Hotchkiss (2022) considered Cantabrigiaster to be a junior synonym of the chinianasterid genus Villebrunaster, though the authors maintained C. fezouataensis as a distinct species within the latter genus.[75]

Cherbonniericrinus requiensis[76]

Sp. nov

Valid

Roux, Martinez & Vizcaïno

Eocene (Ypresian)

Шаблон:Flag

A crinoid belonging to the family Rhizocrinidae.

Chomataster breizh[77]

Sp. nov

Valid

Jagt et al.

Late Cretaceous (Campanian)

Spiennes Chalk Formation

Шаблон:Flag

A starfish belonging to the family Goniasteridae.

Chrispaulia spinosa[78]

Sp. nov

Valid

Gale & Wesener

Early Cretaceous (Hauterivian)

Tealby Clay

Шаблон:Flag
Шаблон:Flag

A starfish belonging to the family Goniopectinidae.

Chrispaulia wrightorum[78]

Sp. nov

Valid

Gale & Wesener

Early Cretaceous (Albian)

Hunstanton Formation

Шаблон:Flag

A starfish belonging to the family Goniopectinidae.

Costatocrinus fragilis[79]

Sp. nov

In press

Gale

Late Cretaceous (Campanian)

Шаблон:Flag

A crinoid.

Dermacantha reolidi[70]

Sp. nov

Valid

Thuy & Numberger-Thuy

Early Jurassic (Toarcian)

Posidonia Shale

Шаблон:Flag

A brittle star belonging to the family Ophionereididae.

Douglasicrinus[79]

Gen. et sp. nov

In press

Gale

Late Cretaceous (Campanian)

Шаблон:Flag

A crinoid. Genus includes new species D. alumensis.

Echinosphaeraster[72]

Gen. et comb. nov

Valid

Gale

Late Jurassic (Kimmeridgian)

Шаблон:Flag
Шаблон:Flag

A starfish belonging to the family Sphaerasteridae. The type species is "Asterias" scutatus Goldfuss (1833).

Eosphaeraster[72]

Gen. et sp. nov

Valid

Gale

Early Jurassic (Pliensbachian)

Шаблон:Flag

A starfish belonging to the family Sphaerasteridae. The type species is E. amellagensis.

Gastecrinus[80]

Gen. et sp. nov

Valid

Roux & Philippe

Early Miocene

Шаблон:Flag

A stalked crinoid of uncertain phylogenetic placement. Genus includes new species G. vinealis.

Gennaeocrinus tariatensis[81]

Sp. nov

Valid

Waters & Ausich

Devonian (Emsian)

Tariat Formation

Шаблон:Flag

A monobathrid crinoid.

Globator aegyptiaca[82]

Sp. nov

In press

El Qot

Early Cretaceous (Albian)

Шаблон:Flag

A sea urchin.

Globulocrinus[76]

Gen. et sp. nov

Valid

Roux, Martinez & Vizcaïno

Eocene (Ypresian)

Шаблон:Flag

A crinoid belonging to the family Rhizocrinidae. Genus includes new species G. amphoraformis.

Halocrinites heinorum[83]

Sp. nov

Valid

Bohatý & Ausich

Devonian (EifelianGivetian)

Шаблон:Flag

A crinoid belonging to the group Eucladida.

Hessicrinus vectensis[79]

Sp. nov

In press

Gale

Late Cretaceous (Campanian)

Шаблон:Flag

A crinoid.

Holopus plaziati[76]

Sp. nov

Valid

Roux, Martinez & Vizcaïno

Eocene (Ypresian)

Шаблон:Flag

A crinoid belonging to the family Holopodidae.

Hrabalicrinus[84]

Gen. et sp. nov

Valid

Salamon & Płachno

Late Jurassic (Oxfordian)

Шаблон:Flag

A comatulid crinoid. Genus includes new species H. zitti.

Ikerus[85]

Gen. et sp. nov

Valid

Jell & Sprinkle

Cambrian

Thorntonia Limestone

Шаблон:Flag

An edrioblastoid. Genus includes new species I. edgari

Imagdacrinus[86]

Gen. et sp. et comb. nov

Valid

Rozhnov

Silurian

Шаблон:Flag

A myelodactylid disparid crinoid. Genus includes new species I. minutus, as well as "Myelodactylus" flexibilis Stukalina (1982) and "Myelodactylus" rimatus Stukalina (2000).

Inexpectacantha ullmanni[70]

Sp. nov

Valid

Thuy & Numberger-Thuy

Early Jurassic (Toarcian)

Posidonia Shale

Шаблон:Flag

A brittle star belonging to the group Euryophiurida.

Jurapecten dhondtae[78]

Sp. nov

Valid

Gale & Wesener

Late Cretaceous (Maastrichtian)

Maastricht Formation

Шаблон:Flag

A starfish belonging to the family Benthopectinidae.

Jurapecten infrajurensis[78]

Sp. nov

Valid

Gale & Wesener

Jurassic (ToarcianAalenian)

Шаблон:Flag
Шаблон:Flag

A starfish belonging to the family Benthopectinidae.

Kholokholnyacrinus[87]

Gen. et sp. nov

Valid

Mirantsev

Carboniferous (Pennsylvanian)

Smedva Formation

Шаблон:Flag
(Шаблон:Flag)

A cladid crinoid. Genus includes new species K. ilkhovskyi.

Kunmingeocrinus[88]

Gen. et sp. nov

In press

Zhao et al.

Cambrian Stage 4

Шаблон:Flag

A gogiid eocrinoid. Genus includes new species K. cupuliformis.

Lapidaster hougardae[70]

Sp. nov

Valid

Thuy & Numberger-Thuy

Early Jurassic (Toarcian)

Posidonia Shale

Шаблон:Flag

A brittle star belonging to the group Ophioscolecida and the family Ophioscolecidae.

Mooreocrinus liaoi[89]

Sp. nov

In press

Mao & Li in Mao et al.

Carboniferous (Pennsylvanian)

Outangdi Formation

Шаблон:Flag

A cladid crinoid.

Nafarroina[90]

Gen. et sp. nov

Valid

Forner i Valls, Arbilla Karasatorre & Moreno Alcalde

Late Cretaceous (Coniacian)

Шаблон:Flag

A sea urchin belonging to the group Holasteroida and the family Stegasteridae. The type species is N. singularis.

Nymphaster mudzborgh[77]

Sp. nov

Valid

Jagt et al.

Late Cretaceous (Campanian)

Шаблон:Flag

A starfish belonging to the family Goniasteridae, a species of Nymphaster.

Ophioduplantiera[91]

Gen. et sp. nov

Valid

Thuy, Numberger-Thuy & Pineda-Enríquez

Early Jurassic (Sinemurian to Pliensbachian)

Adnet Formation

Шаблон:Flag

A brittle star belonging to the family Ophiuridae. The type species is O. noctiluca.

Ophiogojira[91]

Gen. et 3 sp. nov

Valid

Thuy, Numberger-Thuy & Pineda-Enríquez

Early Jurassic (Pliensbachian to Toarcian)

Aubange Formation

Шаблон:Flag
Шаблон:Flag

A brittle star belonging to the group Ophiurina. The type species is O. labadiei Thuy, Numberger-Thuy & Pineda-Enríquez; genus also includes new species O. andreui Thuy, Numberger-Thuy & Pineda-Enríquez and O. aliorbis Thuy & Numberger-Thuy.[70]

Ophiomisidium pratchettae[70]

Sp. nov

Valid

Thuy & Numberger-Thuy

Early Jurassic (Toarcian)

Posidonia Shale

Шаблон:Flag

A brittle star belonging to the group Ophiurida and the family Astrophiuridae.

Ophiomusa perezi[70]

Sp. nov

Valid

Thuy & Numberger-Thuy

Early Jurassic (Toarcian)

Posidonia Shale

Шаблон:Flag

A brittle star belonging to the group Ophiurida and the family Ophiomusaidae.

Ophiosuperstes[92]

Gen. et sp. nov

Valid

Thuy, Maxwell & Pruss

Early Triassic

Moenkopi Formation

Шаблон:Flag
(Шаблон:Flag)

A brittle star belonging to the group Ophintegrida. The type species is O. praeparvus.

Ophiotardis[70]

Gen. et sp. et comb. nov

Valid

Thuy & Numberger-Thuy

Early Jurassic (Sinemurian-Toarcian)

Шаблон:Flag Шаблон:Flag Шаблон:Flag? Шаблон:Flag?

A brittle star belonging to the group Ophiurida and the family Ophiopyrgidae. The type species is O. tennanti; genus also includes "Ophiura" astonensis Hess (1964).

Palaeocoma kortei[70]

Sp. nov

Valid

Thuy & Numberger-Thuy

Early Jurassic (Toarcian)

Posidonia Shale

Шаблон:Flag

A brittle star belonging to the group Ophiurida and the family Ophiopyrgidae.

Papacrinus[80]

Gen. et sp. nov

Valid

Roux & Philippe

Early Miocene

Шаблон:Flag

A stalked crinoid belonging to the family Balanocrininae. Genus includes new species P. avignonensis.

Paraconocrinus rhodanicus[80]

Sp. nov

Valid

Roux & Philippe

Early Miocene

Шаблон:Flag

A stalked crinoid belonging to the family Rhizocrinidae.

Perikefalea[93]

Gen. et 2 sp. nov

Valid

Lefebvre & Ausich

Silurian?-Devonian

Santa Rosa Formation

Шаблон:Flag
Шаблон:Flag?

A mitrate. Genus includes new species P. racheboeufi and possibly P? cybeleae

Pouzaster[72]

Gen. et sp. nov

Valid

Gale

Jurassic (Toarcian to Bathonian)

Шаблон:Flag

A starfish belonging to the family Sphaerasteridae. The type species is P. pocknotata.

Pseudobystrowicrinus[94]

Gen. et sp. nov

Valid

Donovan, Deckers & Jagt

Devonian

Шаблон:Flag

A crinoid columnal. The type species is P. fionae.

Pseudoconocrinus lavadensis[76]

Sp. nov

Valid

Roux, Martinez & Vizcaïno

Eocene (Ypresian)

Шаблон:Flag

A crinoid belonging to the family Rhizocrinidae.

Pseudodiplocidaris[95]

Gen. et comb. nov

Valid

Hostettler et al.

Late Jurassic (Oxfordian)

St-Ursanne Formation

Шаблон:Flag

A sea urchin belonging to the group Cidaroida and the family Diplocidaridae. The type species is "Diplocidaris" bernasconii Bischof, Hostettler & Menkveld-Gfeller (2018).

Punkaster[78]

Gen. et 2 sp. nov

Valid

Gale & Wesener

Late Cretaceous

Tor Formation

Шаблон:Flag
Шаблон:Flag
Шаблон:Flag
Шаблон:Flag
Шаблон:Flag

A starfish belonging to the family Benthopectinidae. The type species is P. spinifera; genus also includes P. ruegenensis.

Rugosphaeraster[72]

Gen. et sp. nov

Valid

Gale

Late Cretaceous (Campanian and Maastrichtian)

Шаблон:Flag
Шаблон:Flag

A starfish belonging to the family Sphaerasteridae. The type species is R. ruegenensis.

Sagittacrinus rotundacutus[79]

Sp. nov

In press

Gale

Late Cretaceous (Campanian)

Шаблон:Flag

A crinoid.

Scolechinus sossanensis[96]

Sp. nov

Valid

Borghi, Bottazzi & Caporiondo

Eocene (Priabonian)

Шаблон:Flag

A sea urchin belongint to the family Trigonocidaridae.

Sidericrinus (col.) plymouthensis[97]

Sp. nov

Valid

Donovan & Fearnhead

Early Devonian

Шаблон:Flag

A crinoid.

Sinaiosalenia[82]

Gen. et sp. nov

In press

El Qot

Late Cretaceous (Cenomanian)

Шаблон:Flag

A sea urchin. Genus includes new species S. rhombohedralis.

Sinosura dieschbourgae[70]

Sp. nov

Valid

Thuy & Numberger-Thuy

Early Jurassic (Toarcian)

Posidonia Shale

Шаблон:Flag

A brittle star belonging to the group Ophioscolecida and the family Ophioleucidae.

Thanataster[70]

Gen. et sp. et comb. nov

Valid

Thuy & Numberger-Thuy

Early Jurassic (Sinemurian to Toarcian)

Шаблон:Flag

A brittle star belonging to the group Ophiurida. The type species is T. desdemonia; genus also includes "Ophiomusium" sinemurensis Kutscher & Hary (1991).

Thorntonites[85]

Gen. et sp. nov

Valid

Jell & Sprinkle

Cambrian

Thorntonia Limestone

Шаблон:Flag

A stalked eocrinoid. Genus includes new species T. dowlingi

Tiburtocrinus[98]

Gen. et sp. nov

Valid

Manni & Di Nardo

Early Jurassic (Toarcian)

Corniola Formation

Шаблон:Flag

A crinoid belonging to the group Isocrinida and the family Paracomatulidae. The type species is T. toarcensis.

Trecrinus[99]

Gen. et sp. nov

Valid

Semenov et al.

Ordovician (Darriwilian)

Шаблон:Flag

A hybocrinid crinoid. Genus includes new species T. schmidti.

Valettaster planus[71]

Sp. nov

In press

Loba & Radwańska

Late Jurassic (Kimmeridgian)

Шаблон:Flag

A starfish belonging to the family Sphaerasteridae.

Valettaster thuyi[72]

Sp. nov

Valid

Gale

Early Jurassic (Toarcian)

Шаблон:Flag

A starfish belonging to the family Sphaerasteridae.

Valimocrinus[86]

Gen. et sp. nov

Valid

Rozhnov

Ordovician

Шаблон:Flag
(Шаблон:Flag)

A crinoid, possibly a myelodactylid disparid. Genus includes new species V. terentyevi

Zoroaster marambioensis[100]

Sp. nov

Valid

Palópolo et al.

Eocene

La Meseta Formation

Antarctica

A starfish belonging to the family Zoroasteridae.

Zuravlicrinus[86]

Gen. et sp. nov

Valid

Rozhnov

Silurian

Шаблон:Flag

A crinoid, possibly a myelodactylid disparid. Genus includes new species Z. milicinae

Research

  • Fossil material of Dendrocystites belonging or related to the species D. sedgwicki is described from the Ordovician Lower Ktaoua Formation (Morocco) by Nohejlová & Lefebvre (2021), representing the first record of Soluta from Morocco and Africa in general reported to date.[101]
  • A study on the anatomy of Glyptosphaerites is published by Paul & Toom (2021).[102]
  • Redescription of the anatomy of Cystoblastus, and a study on the phylogenetic relationships of glyptocystitoids and hemicosmitoids, is published by Paul & Toom (2021).[103]
  • A study on the functional efficiency of hydrospires of blastoids, evaluating their potential significance for longer survival of blastoids than other blastozoan echinoderms, is published by Paul (2021).[104]
  • A study on extinction selectivity and changes in taxonomic, morphological and ecological diversity of diplobathrid crinoids throughout their evolutionary history is published by Cole & Hopkins (2021).[105]
  • A brittle star specimen (belonging to the group Oegophiurida and probably to the genus Protaster) preserving the body cavity in three dimensions and soft tissues, including the tube feet and internal structures, is described from the Silurian Herefordshire Lagerstätte (United Kingdom) by Carter et al. (2021).[106]

Conodonts

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Ancyrogondolella? bohorensis[107]

Sp. nov

Valid

Karádi et al.

Late Triassic (Norian)

Шаблон:Flag

A member of the family Gondolellidae.

Ancyrogondolella goldingi[107]

Sp. nov

Valid

Karádi et al.

Late Triassic (Norian)

Шаблон:Flag

A member of the family Gondolellidae.

Apsidognathus yanbianensis[108]

Sp. nov

Valid

Yan & Wu

Silurian

Шаблон:Flag

Borinella? curvata[109]

Sp. nov

In press

Orchard

Early Triassic (Olenekian)

Шаблон:Flag
(Шаблон:Flag)

Carbogondolella[110]

Gen. nov

Valid

Golding & Orchard

Carboniferous (Pennsylvanian)

A member of family Gondolellidae.

Caudicriodus anitae[111]

Sp. nov

Valid

Barrick, Sundgren & McAdams

Devonian (Lochkovian)

Шаблон:Flag

Caudicriodus murphyi[111]

Sp. nov

Valid

Barrick, Sundgren & McAdams

Devonian (Lochkovian)

Шаблон:Flag

Columbitella brevis[109]

Sp. nov

In press

Orchard

Early Triassic (Olenekian)

Шаблон:Flag
(Шаблон:Flag)

Columbitella talpa[112]

Sp. nov

In press

Golding

Early Triassic (Olenekian)

Шаблон:Flag
(Шаблон:Flag)

Columbitella weitschati[109]

Sp. nov

In press

Orchard

Early Triassic (Olenekian)

Шаблон:Flag
(Шаблон:Flag)

Declinognathodus benedictus[110]

Sp. nov

Valid

Golding & Orchard

Carboniferous

Шаблон:Flag
(Шаблон:Flag)

Dollymae peregrina[113]

Sp. nov

In press

Świś

Devonian (Famennian)

Шаблон:Flag

Drepanoistodus iommii[114]

Sp. nov

Valid

Rasmussen, Eriksson & Lindskog

Middle Ordovician

Lynna Formation

Шаблон:Flag

A member of Protopanderodontida belonging to the family Drepanoistodontidae.

Drepanoistodus svendi[114]

Sp. nov

Valid

Rasmussen, Eriksson & Lindskog

Middle Ordovician

Volkhov Formation

Шаблон:Flag

A member of Protopanderodontida belonging to the family Drepanoistodontidae.

Drepanoistodus viirae[114]

Sp. nov

Valid

Rasmussen, Eriksson & Lindskog

Middle Ordovician

Sillaoru Formation

Шаблон:Flag

A member of Protopanderodontida belonging to the family Drepanoistodontidae.

Epigondolella buseri[107]

Sp. nov

Valid

Karádi et al.

Late Triassic (Norian)

Шаблон:Flag

A member of the family Gondolellidae.

Epigondolella kozjanskoensis[107]

Sp. nov

Valid

Karádi et al.

Late Triassic (Norian)

Шаблон:Flag

A member of the family Gondolellidae.

Epigondolella ritae[107]

Sp. nov

Valid

Karádi et al.

Late Triassic (Norian)

Шаблон:Flag
Шаблон:Flag

A member of the family Gondolellidae.

Epigondolella senovoensis[107]

Sp. nov

Valid

Karádi et al.

Late Triassic (Norian)

Шаблон:Flag

A member of the family Gondolellidae.

Epigondolella slovenica[107]

Sp. nov

Valid

Karádi et al.

Late Triassic (Norian)

Шаблон:Flag

A member of the family Gondolellidae.

Guangxidella minuta[115]

Sp. nov

Valid

Maekawa & Jenks

Early Triassic (Olenekian)

Thaynes Group

Шаблон:Flag
(Шаблон:Flag)

Idiognathodus coffeyvillensis[116]

Sp. nov

Valid

Rosscoe & Barrick

Carboniferous (Kasimovian)

Atrasado Formation

Шаблон:Flag
(Шаблон:Flag
Шаблон:Flag)

Idiognathodus grubbsi[110]

Sp. nov

Valid

Golding & Orchard

Шаблон:Flag
(Шаблон:Flag)

Idiognathodus kinneyensis[116]

Sp. nov

Valid

Rosscoe & Barrick

Carboniferous (Kasimovian)

Atrasado Formation

Шаблон:Flag
(Шаблон:Flag)

Magnigondolella acuminata[109]

Sp. nov

In press

Orchard

Early Triassic (Olenekian)

Шаблон:Flag
(Шаблон:Flag)

Magnigondolella incurva[109]

Sp. nov

In press

Orchard

Early Triassic (Olenekian)

Шаблон:Flag
(Шаблон:Flag)

Magnigondolella? minuta[109]

Sp. nov

In press

Orchard

Early Triassic (Olenekian)

Шаблон:Flag
(Шаблон:Flag)

Magnigondolella mutata[109]

Sp. nov

In press

Orchard & Goudemand in Orchard

Early Triassic (Olenekian)

Шаблон:Flag
(Шаблон:Flag)

Magnigondolella peribola[109]

Sp. nov

In press

Orchard & Golding in Orchard

Early Triassic (Olenekian)

Шаблон:Flag
(Шаблон:Flag)

Magnigondolella tozeri[109]

Sp. nov

In press

Orchard

Early Triassic (Olenekian)

Шаблон:Flag
(Шаблон:Flag)

Magnigondolella trutchensis[109]

Sp. nov

In press

Orchard

Early Triassic (Olenekian)

Шаблон:Flag
(Шаблон:Flag)

Mesogondolella qiangtangensis[117]

Sp. nov

In press

Yuan et al.

Permian (Kungurian)

Lugu Formation

Шаблон:Flag

Mosherella longnanensis[118]

Sp. nov

Valid

Li & Lai in Li et al.

Late Triassic (Carnian)

Dengdengqiao Formation

Шаблон:Flag

Neognathodus brulensis[110]

Sp. nov

Valid

Golding & Orchard

Carboniferous

Шаблон:Flag
(Шаблон:Flag)

Neogondolella bucheri[109]

Sp. nov

In press

Orchard

Early Triassic (Olenekian)

Шаблон:Flag
(Шаблон:Flag)

Neogondolella darwinensis[109]

Sp. nov

In press

Orchard & Goudemand in Orchard

Early Triassic (Olenekian)

Шаблон:Flag
(Шаблон:Flag)

Neogondolella gradinarui[119]

Sp. nov

Valid

Golding & Orchard in Golding

Middle Triassic (Anisian)

Шаблон:Flag
Шаблон:Flag

Neogondolella praeacuta[109]

Sp. nov

In press

Orchard & Goudemand in Orchard

Early Triassic (Olenekian)

Шаблон:Flag
(Шаблон:Flag)

Neogondolella sinuosa[109]

Sp. nov

In press

Orchard & Goudemand in Orchard

Early Triassic (Olenekian)

Шаблон:Flag
(Шаблон:Flag)

Neogondolella spathiconstricta[109]

Sp. nov

In press

Orchard

Early Triassic (Olenekian)

Шаблон:Flag
(Шаблон:Flag)

Norigondolella imperfecta[110]

Sp. nov

Valid

Golding & Orchard

Шаблон:Flag
(Шаблон:Flag)

Ozarkodina huenickeni[120]

Sp. nov

In press

Gómez et al.

Silurian (Ludfordian) to Devonian (Lochkovian)

Los Espejos Formation

Шаблон:Flag

Paragondolella ebruae[121]

Sp. nov

Valid

Kılıç

Middle Triassic (Anisian)

Шаблон:Flag

Paragondolella hirschii[121]

Sp. nov

Valid

Kılıç & Budurov in Kılıç

Middle Triassic (Anisian)

Шаблон:Flag

Paragondolella nyoromo[110]

Sp. nov

Valid

Golding & Orchard

Шаблон:Flag
(Шаблон:Flag)

Paragondolella praecornuta[121]

Sp. nov

Valid

Kılıç et al. in Kılıç

Middle Triassic (Anisian)

Шаблон:Flag

Parvigondolella ciarapicae[122]

Sp. nov

Valid

Rigo & Du in Du et al.

Late Triassic (Norian and Rhaetian)

Gabbs Formation
San Hipolito Formation
Scillato Formation

Шаблон:Flag
Шаблон:Flag
Шаблон:Flag
Шаблон:Flag
(Шаблон:Flag)

Pelekysgnathus soarae[123]

Sp. nov

Valid

Over et al.

Devonian–Carboniferous transition

Dyer Formation

Шаблон:Flag
(Шаблон:Flag)

Praeicriodus simpsoni[111]

Sp. nov

Valid

Barrick, Sundgren & McAdams

Silurian (LudlowPridoli)

Шаблон:Flag

Pseudosweetognathus accensus[110]

Sp. nov

Valid

Golding & Orchard

Permian

Шаблон:Flag
(Шаблон:Flag)

Tasmanognathus coronatus[124]

Sp. nov

Valid

Yang et al.

Ordovician (Katian)

Шаблон:Flag

Research

  • A study aiming to resolve the nature, porosity and permeability of conodont white matter is published by Atakul-Özdemir et al. (2021).[125]
  • A study aiming to determine feeding behavior, growth patterns and possible changes of feeding behavior during ontogeny in Proconodontus muelleri and Panderodus equicostatus is published by Leonhard et al. (2021).[126]
  • An exceptionally preserved specimen of Panderodus unicostatus is described from the Waukesha Lagerstätte (Wisconsin, United States) by Murdock & Smith (2021), who evaluate the implications of this specimen for the knowledge of the homology within conodont feeding apparatuses and body anatomy of primitive conodonts, and interpret P. unicostatus as a macrophagous predator.[127]
  • A study on the phylogenetic relationships of Early Triassic conodonts is published by Bai et al. (2021).[128]
  • Han et al. (2021) reconstruct ontogenetic series for seven stratigraphically important Early Triassic conodont species, on the basis of fossil material from the Salt Range and Surghar Range (Pakistan), and study the phylogenetic relationships among these taxa.[129]

Fish

Шаблон:Main

Amphibians

New taxa

Name Novelty Status Authors Age Type locality Location Notes Images

Bermanerpeton[130]

Gen. et sp. nov

Valid

Werneburg, Schneider & Lucas

Carboniferous (Kasimovian)

Atrasado Formation

Шаблон:Flag
(Шаблон:Flag)

A dvinosauroid temnospondyl. The type species is B. kinneyi.

Euronecturus[131]

Gen. et sp. nov

Valid

Macaluso, Villa & Mörs

Miocene

Ville Formation

Шаблон:Flag

A proteid salamander. The type species is E. grogu.

Joermungandr[132]

Gen. et sp. nov

Valid

Mann, Calthorpe & Maddin

Carboniferous (Moscovian)

Mazon Creek fossil beds

Шаблон:Flag
(Шаблон:Flag)

A member of Recumbirostra. The type species is J. bolti.

Laosuchus hun[133]

Sp. nov

Valid

Liu & Chen

Late Permian

Naobaogou

Шаблон:Flag

A chroniosuchian.

Файл:Laosuchus NT.png

Leiopelma bishopi[134]

Sp. nov

Valid

Easton, Tennyson & Rawlence

Late Pliocene (Waipipian–Mangapanian)

Kowai Formation

Шаблон:Flag

A species of Leiopelma.

Neimengtriton[135]

Gen. et comb. nov

Jia, Anderson & Gao

Middle Jurassic (Bathonian)

Haifanggou Formation

Шаблон:Flag

A stem-hynobiid salamander; a new genus for "Liaoxitriton" daohugouensis.

Palaeobatrachus codreavladi[136]

Sp. nov

Valid

Roček, Rage & Venczel

Palaeobatrachus minutus[136]

Sp. nov

Valid

Roček, Rage & Venczel

Primaevorana[137]

Gen. et sp. nov

Valid

Moura et al.

Early Cretaceous (Aptian)

Crato Formation

Шаблон:Flag

A frog belonging to the suborder Neobatrachia. The type species is P. cratensis

Rocekophryne[138]

Gen. et sp. nov

Valid

Rage et al.

Eocene

Шаблон:Flag

A frog belonging to the group Ranoidea. The type species is R. ornata.

Sclerocephalus concordiae[139]

Sp. nov

Valid

Schoch & Sobral

Шаблон:Flag

Thoosuchus abbasovi[140]

Sp. nov

Valid

Novikov

Early Triassic

Шаблон:Flag

Research

  • A study on the function and evolution of forelimbs of early tetrapods, based on data from three-dimensional models of bones and muscles of forelimbs of Eusthenopteron foordi, Acanthostega gunnari and Pederpes finneyae, is published by Molnar et al. (2021).[141]
  • A study on the evolutionary dynamics of early tetrapods and their closest fish relatives is published by Simões & Pierce (2021).[142]
  • A study on the anatomy of the skull of Whatcheeria deltae is published by Rawson et al. (2021).[143]
  • Description of the anatomy of the postcranial skeleton of Whatcheeria deltae is published by Otoo et al. (2021).[144]
  • A study on the femoral bone histology of Greererpeton, and on its implications for the knowledge of the life history of this tetrapod, is published by Whitney & Pierce (2021).[145]
  • A study on the locomotor capabilities of tetrapods from the earliest Carboniferous Blue Beach site (Nova Scotia, Canada) is published by Lennie et al. (2021).[146]
  • A study on the early evolution of long bone elongation and bone marrow in tetrapods, based on data from temnospondyls (Apateon and Metoposaurus) and seymouriamorphs (Seymouria and Discosauriscus), is published by Estefa et al. (2021), who find the terrestrial Permian seymouriamorphs to be the oldest known tetrapods exhibiting a centralized marrow organization of long bones (which allows production of blood cells as in extant amniotes), and argue that the migration of blood-cell production in long bones probably wasn't an exaptation predating the water-to-land transition.[147]
  • A study on the skeletal anatomy of the holotype specimen of Ichthyerpeton bradleyae is published by Ó Gogáin & Wyse Jackson (2021).[148]
  • A study on the relations between vertebral shape and terrestriality in the evolution of temnospondyls is published by Carter et al. (2021).[149]
  • Description of new fossil material of temnospondyls from the Triassic of the Ruhuhu and Luangwa basins (Tanzania and Zambia), providing new information on the diversity of Triassic African temnospondyls and their recovery after the Permian–Triassic extinction event, is published by Steyer et al. (2021).[150]
  • A study on the morphological changes in the skeleton of Onchiodon labyrinthicus during its ontogeny, on the phylogenetic relationships of eryopids, and on the evolution of the life cycle in eryopids is published by Schoch (2021).[151]
  • A study on the anatomy and phylogenetic relationships of "Cheliderpeton" lellbachae is published by Schoch (2021), who transfers this species to the genus Glanochthon in the family Sclerocephalidae.[152]
  • A study on the histology of different-sized femora and vertebra of specimens of Platyoposaurus stuckenbergi is published by Uliakhin, Skutschas & Saburov (2021).[153]
  • Redescription of the holotype of Cryobatrachus kitchingi is published by Gee, Makovicky & Sidor (2021), who interpret this specimen as more likely to be the juvenile of an indeterminate capitosaur than a lydekkerinid, and who also describe partial temnospondyl skull from the lower Fremouw Formation (Antarctica), provisionally referred to Lydekkerinidae.[154]
  • A study on the anatomy and phylogenetic relationships of Tertrema acuta is published by Slodownik, Mörs & Kear (2021).[155]
  • Redescription of the metoposaurid fossil material from the Upper Triassic Zions View locality (New Oxford Formation; Pennsylvania, United States) is published by Gee & Jasinski (2021), who assign this material to the species Anaschisma browni, expanding known geographic range of this taxon.[156]
  • Redescription of the holotype specimens of Borborophagus wyomingensis and Koskinonodon princeps, and a reassessment of their synonymy with Anaschisma browni, is published by Kufner & Gee (2021).[157]
  • A study on the histology of the mandible of Metoposaurus krasiejowensis is published by Gruntmejer, Bodzioch & Konietzko-Meier (2021).[158]
  • A study on the anatomy and phylogenetic relationships of Timonya anneae and Procuhy nazariensis is published by Marsicano et al. (2021).[159]
  • A study on the anatomy and phylogenetic relationships of Macrerpeton huxleyi is published by Schoch & Milner (2021).[160]
  • A study on the phylogenetic relationships of dissorophid temnospondyls is published by Gee (2021).[161]
  • Description of a new specimen of Conjunctio from the Permian Cutler Formation (Colorado, United States), and a study on the phylogenetic relationships of this genus, is published by Gee et al. (2021).[162]
  • New fossil material of Micropholis stowi, expanding known geographic range of this species, is described from the lower Fremouw Formation (Halfmoon Bluff, Antarctica) by Gee & Sidor (2021).[163]
  • New early adult specimen of Milnererpeton huberi, providing new information on the ontogenetic development of amphibamiform temnospondyls, is described from the Carboniferous (Kasimovian) Atrasado Formation (New Mexico, United States) by Werneburg, Schneider & Lucas (2021).[164]
  • A study on the skeletal anatomy of Apateon dracyiensis, the anatomical variation in the fossil material of this species, and on its ontogeny, is published by Werneburg (2021).[165]
  • A study on the anatomy and development of the wrist of Genibatrachus is published by Roček et al. (2021).[166]
  • An early Campanian assemblage of anuran bones, suggestive of high local species richness of frogs, is described from the Aguja Formation (Texas, United States) by Wick (2021).[167]
  • Fossil material of Late Cretaceous frogs, including fossils of calyptocephalellid frogs and the southernmost record of pipids (Kuruleufenia) worldwide reported to date, is described from the CampanianMaastrichtian assemblages from Chilean and Argentinean Patagonia (Dorotea, Allen and Los Alamitos formations) by Suazo Lara & Gómez (2021).[168]
  • Description of new pipimorph fossil material from the Cenomanian Candeleros Formation (Argentina), and a study on the implications of these fossils for the knowledge of the formation of the sacrum in pipimorphs throughout their evolutionary history, is published by Báez, Muzzopappa & Araújo (2021).[169]
  • Description of new fossil material of Hungarobatrachus szukacsi from the Upper Cretaceous (Santonian) Csehbánya Formation (Hungary), and a study on the anatomy and phylogenetic relationships of this species, is published by Venczel, Szentesi & Gardner (2021).[170]
  • Revision of the fossil record of the family Ceratophryidae is published by Gómez & Turazzini (2021).[171]
  • Redescription and a study on the phylogenetic relationships of Bufo servatus is published by Lemierre et al. (2021), who interpret this species as a senior synonym of Thaumastosaurus gezei (resulting in new combination Thaumastosaurus servatus), and assign it to the family Pyxicephalidae.[172]
  • Revision of the fossil material of Mesozoic temnospondyls and anurans housed in the collections of the Sirindhorn Museum and the Palaeontological Research and Education Centre of Mahasarakham University (Thailand), including fossils of brachyopids resembling the Chinese forms, is published by Nonsrirach, Manitkoon & Lauprasert (2021).[173]
  • Redescription of Nannaroter mckinziei, based on data from the holotype and from a new specimen from the Richards Spur locality (Oklahoma, United States), is published by MacDougall et al. (2021).[174]
  • A study aiming to determine plausible body postures and locomotion of Orobates pabsti is published by Zwafing et al. (2021).[175]
  • A study on the anatomy of the braincase and inner ear of Limnoscelis dynatis is published by Klembara et al. (2021).[176]

Reptiles

Шаблон:Main

Synapsids

Non-mammalian synapsids

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Acratophorus[177]

Gen. et comb. nov

Valid

Kammerer & Ordoñez

Middle Triassic (Anisian)?

Río Seco de la Quebrada

Шаблон:Flag

A kannemeyeriid dicynodont, the type species is "Kannemeyeria" argentinensis.

Файл:Acratophorus argentinensis.png

Borealestes cuillinensis[178]

Sp. nov

Valid

Panciroli et al.

Middle Jurassic (Bathonian)

Kilmaluag Formation

Шаблон:Flag

A docodont.

Dobunnodon[178]

Gen. et comb. nov

Valid

Panciroli et al.

Middle Jurassic (Bathonian)

Forest Marble Formation

Шаблон:Flag

A docodont; a new genus for "Borealestes" mussettae Sigogneau−Russell (2003).

Fossiomanus[179]

Gen. et sp. nov

Valid

Mao et al.

Early Cretaceous (Aptian)

Jiufotang Formation

Шаблон:Flag

A cynodont belonging to the family Tritylodontidae. Genus includes new species F. sinensis.

Impidens[180]

Gen. et sp. nov

Valid

Tolchard et al.

Middle Triassic

Cynognathus Assemblage Zone

Antarctica
Шаблон:Flag

A gomphodont cynodont. Genus includes new species I. hancoxi.

Isengops[181]

Gen. et sp. nov

Sidor, Tabor & Smith

Late Permian

Madumabisa Mudstone

Шаблон:Flag

A burnetiamorph biarmosuchian. Genus includes new species I. luangwensis.

Kannemeyeria aganosteus[177]

Sp. nov

Valid

Kammerer & Ordoñez

Middle Triassic (Anisian)?

Quebrada de los Fósiles

Шаблон:Flag

A species of Kannemeyeria.

Файл:Kannemeyeria DB.jpg

Mobaceras[182]

Gen. et sp. nov

Valid

Kammerer & Sidor

Middle Permian

Madumabisa Mudstone

Шаблон:Flag

A burnetiid therapsid. The type species is M. zambeziense.

Shashajaia[183]

Gen. et sp. nov

Huttenlocker et al.

Carboniferous (Gzhelian)

Halgaito Formation

Шаблон:Flag
(Шаблон:Flag)

An early member of Sphenacodontia. The type species is S. bermani.

Turfanodon jiufengensis[184]

Sp. nov

Valid

Liu

Late Permian

Naobaogou Formation

Шаблон:Flag

A dicynodontoid dicynodont.

Research

  • A study comparing species richness of synapsids and reptiles during the Pennsylvanian and Cisuralian, evaluating the impact of the preservation biases, the effect of Lagerstätten, and contested phylogenetic placement of late Carboniferous and early Permian tetrapods on estimates of relative diversity patterns of synapsids and reptiles, is published by Brocklehurst (2021), who interprets his findings as challenging the assumption that synapsids dominated during the Pennsylvanian and Cisuralian.[185]
  • A study on the evolution of the vertebral column in synapsids is published by Jones et al. (2021), who interpret their findings as refuting the idea that the transition from non-mammalian synapsids to mammals involved a shift from reptile-like lateral bending of the backbone to sagittal bending, and argue that non-mammalian synapsids were characterized by their own unique functional regime of the vertebral column, distinct from that of extant reptiles and amphibians.[186]
  • A study comparing the forelimb morphology in extant mammals and fossil non-mammalian synapsids, aiming to determine whether extant mammals are good ecomorphological analogues for extinct synapsids, whether examples of ecomorphological convergence can be found among synapsids, and whether evolutionary history determined available functional solutions in synapsid forelimbs, is published by Lungmus & Angielczyk (2021).[187]
  • A study aiming to determine when major shifts in shoulder joint function and a shift from sprawling to parasagittal posture occurred during synapsid evolution, based on relationships between shoulder joint morphology, mobility, and muscle function in extant Argentine black and white tegu, short-beaked echidna and Virginia opossum, as well as on data on anatomical transformations preserved in the fossil record, is published by Brocklehurst et al. (2021).[188]
  • A study aiming to determine the index of blood flow into the femora of non-mammalian synapsids, and using it to determine the maximum metabolic rate of these synapsids, is published by Knaus et al. (2021), who interpret their findings as indicating that aerobic capacity was elevated in non-therapsid synapsids above the level of most recent non-varanid lepidosaurs, turtles and crocodilians since the late Carboniferous, with maximum aerobic metabolic rates at, or above, the level of varanids.[189]
  • Matamales-Andreu et al. (2021) describe probable caseid tracks from the lower Permian of Mallorca (Spain), and evaluate the implications of these tracks for the knowledge of the locomotion of early synapsids.[190]
  • A study comparing the morphology of the maxillary canal of Heleosaurus scholtzi, Varanosaurus acutrostris, Orovenator mayorum and Prolacerta broomi, and evaluating the implications of the morphology of the maxillary canal for the knowledge of the phylogenetic placement of varanopids, is published by Benoit et al. (2021).[191]
  • A study on the neurosensory anatomy of varanopids is published by Bazzana et al. (2021).[192]
  • A study on the skeletal anatomy and phylogenetic relationships of Raranimus dashankouensis is published by Duhamel et al. (2021).[193]
  • A study on the ontogenetic variation in the anatomy of the skulls of biarmosuchians, based on data from skulls of juvenile specimens, is published by Duhamel et al. (2021).[194]
  • A study on the paleoneurology and likely paleobiology of Anteosaurus magnificus is published by Benoit et al. (2021).[195]
  • A study on bone architecture and histology in two species of Anteosaurus from the Tapinocephalus Assemblage Zone of the Karoo Basin (South Africa), aiming to determine the inter-elemental variation in their bone histology and their possible lifestyle adaptations, is published by Bhat, Shelton & Chinsamy (2021).[196]
  • A study on the bone histology of multiple skeletal elements of three specimens belonging to the genus Jonkeria from the Tapinocephalus Assemblage Zone, and on its implications for the knowledge of the paleobiology of these dinocephalians, is published by Bhat, Shelton & Chinsamy (2021).[197]
  • A study on the bone histology of multiple skeletal elements of dinocephalians from the Tapinocephalus Assemblage Zone of the Karoo Basin is published by Bhat, Shelton & Chinsamy (2021).[198]
  • New specimen of Lanthanostegus mohoii, providing new information on the anatomy of the skull of this dicynodont and providing the first direct correlation between the lower Abrahamskraal Formation at Jansenville on the eastern side of the Karoo Basin and the southwestern part of this basin, is described by Rubidge, Day & Benoit (2021).[199]
  • New burrow casts containing skeletons of Diictodon, including associated remains of adult and infant specimens, are described by Smith et al. (2021), who consider it likely that portions of burrows produced Diictodon by were facultatively used as brood chambers.[200]
  • A study on the histology of mandibles and maxillae of Endothiodon bathystoma, and on the development and evolution of multiple tooth rows in this dicynodont, is published by Olroyd et al. (2021).[201]
  • Redescription and a study on the phylogenetic relationships of Kunpania scopulusa is published by Angielczyk, Liu & Yang (2021).[202]
  • A study on the bone histology and likely life history of specimens of Lystrosaurus from the Lower Triassic Turpan Basin (Xinjiang, China), comparing them with specimens from South Africa, is published by Han, Zhao & Liu (2021).[203]
  • A study on the bone histology in a size range of Lystrosaurus skeletal elements from the Jiucaiyuan Formation (China), and on its implications for the knowledge whether members of the genus Lystrosaurus from northern Pangaea had differing life histories than their southern Pangean relatives, is published by Kulik et al. (2021).[204]
  • A new postcranial specimen of a stahleckeriid dicynodont, possibly of Stahleckeria, is described from the Chañares Formation, representing the oldest record of stahleckeriine dicynodonts from the Ischigualasto-Villa Unión Basin in Argentina.[205]
  • A study on the evolution of dicynodont tusks is published by Whitney et al. (2021).[206]
  • A study on the quality of the early cynodont fossil record in time and space, and on its implications for the understanding of the group's evolutionary history, is published by Varnham, Mannion & Kammerer (2021).[207]
  • A study on the anatomy and variation of the stapes in Thrinaxodon and Galesaurus is published by Gaetano & Abdala (2021).[208]
  • A study on the anatomy of the skull of Bolotridon frerensis, and on the phylogenetic relationships of this species, is published by Pusch, Kammerer & Fröbisch (2021).[209]
  • A study on the morphology of the nasal cavity of Exaeretodon riograndensis and Siriusgnathus niemeyerorum is published by Franco et al. (2021).[210]
  • A study on the morphology of the endocast of a specimen of Riograndia guaibensis from the Linha São Luiz site (Candelária Sequence of the Santa Maria Supersequence, Brazil) is published by Kerber et al. (2021).[211]
  • Description of a new specimen of Irajatherium hernandezi from the Linha São Luiz site (Candelária Sequence, Brazil), providing new information on the skeletal anatomy of this cynodont, and a study on the phylogenetic relationships of tritheledontids is published by Kerber et al. (2021).[212]
  • Description of five partially preserved petrosals of early mammaliaforms from the Middle Jurassic sediments of the Berezovsk coal mine (Krasnoyarsk Krai, Russia), and a study on the implications of these fossils for the knowledge of the evolution of the inner ear anatomy in early mammaliaforms, is published by Schultz et al. (2021).[213]
  • New specimen of the Middle Jurassic haramiyidan Vilevolodon diplomylos with well-preserved malleus, incus and ectotympanic is described by Wang et al. (2021).[214]
  • Description of two partial postcranial skeletons of Borealestes from the Kilmaluag Formation (Scotland, United Kingdom), and a study on the phylogenetic relationships of this docodont, is published by Panciroli et al. (2021).[215]

Mammals

Шаблон:Main

Other animals

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Aculeiconchus[216]

Gen. et sp. nov

Valid

Zatoń et al.

Devonian (Givetian)

Maywood Formation

Шаблон:Flag
(Шаблон:Flag)

A microconchid. Genus includes new species A. sandbergi.

Anabarites dalirense[217]

Sp. nov

Valid

Devaere et al.

Early Cambrian

Soltanieh Formation

Шаблон:Flag

An anabaritid.

Andalucilites[218]

Gen. et sp. nov

Valid

Gutiérrez-Marco, Marek & Malinky

Ordovician (Darriwilian)

Шаблон:Flag

A member of Hyolitha. Genus includes new species A. parvulus.

Anulitubus[219]

Gen. et sp. nov

Valid

Moczydłowska in Moczydłowska et al.

Ediacaran

Stáhpogieddi Formation

Шаблон:Flag

A member of Eumetazoa of uncertain phylogenetic placement. The type species is A. formosus.

Arienigraptus balticus[220]

Sp. nov

Valid

Maletz & Ahlberg

Ordovician (Darriwilian)

Шаблон:Flag

A graptolite.

Arienigraptus delicatus[220]

Sp. nov

Valid

Maletz & Ahlberg

Ordovician (Darriwilian)

Шаблон:Flag

A graptolite.

Arienigraptus robustus[220]

Sp. nov

Valid

Maletz & Ahlberg

Ordovician (Dapingian)

Шаблон:Flag

A graptolite.

Arrakiscolex[221]

Gen. et sp. nov

Valid

Leibach et al.

Cambrian (Drumian)

Marjum Formation

Шаблон:Flag
(Шаблон:Flag)

A palaeoscolecid. Genus includes new species A. aasei.

Aulozoon[222]

Gen. et sp. nov

In press

Gehling & Runnegar

Ediacaran

Шаблон:Flag

An annelid. The type species is A. soliorum.

Blastochaetetes reitneri[223]

Sp. nov

In press

Sánchez-Beristain & García-Barrera in Sánchez-Beristain, García-Barrera & Juárez-Aguilar

Late Cretaceous

Tamasopo Formation

Шаблон:Flag

A chaetetid demosponge.

Cardiograptus altaicus[224]

Sp. nov

Valid

Lykova & Sennikov

Ordovician (Dapingian)

Шаблон:Flag

A graptolite belonging to the family Isograptidae.

Choiaella hexactinophora[225]

Sp. nov

Valid

Botting

Ordovician (Darriwilian)

Gilwern Volcanic Formation

Шаблон:Flag

A sponge.

Coniculus[219]

Gen. et sp. nov

Valid

Moczydłowska in Moczydłowska et al.

Ediacaran

Stáhpogieddi Formation

Шаблон:Flag

A member of Eumetazoa of uncertain phylogenetic placement. The type species is C. elegantis.

Cornulites spinosus[226]

Sp. nov

Valid

Vinn & Eyzenga

Late Ordovician

Шаблон:Flag

A cornulitid tubeworm.

Ctenorhabdotus campanelliformis[227]

Sp. nov

Valid

Parry et al.

Cambrian (probably Drumian)

Probably Marjum Formation

Шаблон:Flag
(Шаблон:Flag)

A member of Ctenophora.

Daihuoides[228]

Gen. et sp. nov

Valid

Klug et al.

Devonian (Frasnian)

Escuminac Formation

Шаблон:Flag
(Шаблон:Flag)

A stem-ctenophore. The type species is D. jakobvintheri.

Dailyatia icari[229]

Sp. nov

Valid

Claybourn et al.

Cambrian Series 2

Antarctica

A camenellan tommotiid.

Ekstroemograptus[230]

Gen. et sp. nov

Valid

Maletz & Ahlberg

Ordovician (Darriwilian)

Шаблон:Flag

A graptolite. Genus includes new species E. inexpectatus.

Finkoella[231]

Gen. et 2 sp. nov

Valid

Martyshyn in Martyshyn & Uchman

Ediacaran

Mogilev Formation

Шаблон:Flag

A possible tunicate described on the basis of sack-like body fossils. The type species is F. ukrainica; genus also includes F. oblonga.

Hoffmanigraptus[232]

Gen. et sp. et comb. nov

Valid

Kozłowska

Silurian

Шаблон:Flag
Шаблон:Flag

A graptolite. The type species is H. varsoviensis; genus also includes "Plectograptus" ovatus Kozłowska-Dawidziuk, Lenz & Štorch (2001) and "Plectograptus" karlsteinensis Kozłowska-Dawidziuk, Lenz & Štorch (2001).

Labechia zhuzhainus[233]

Sp. nov

Valid

Jeon in Jeon et al.

Ordovician (Katian)

Xiazhen Formation

Шаблон:Flag

A stromatoporoid.

Labechiella beluatus[233]

Sp. nov

Valid

Jeon in Jeon et al.

Ordovician (Katian)

Xiazhen Formation

Шаблон:Flag

A stromatoporoid.

Leolites malinkyi[218]

Sp. nov

Valid

Marek & Gutiérrez-Marco in Gutiérrez-Marco, Marek & Malinky

Ordovician (Darriwilian)

Шаблон:Flag

A member of Hyolitha.

Lepidocoleus caliburnus[234]

Sp. nov

Valid

Jacquet et al.

Devonian (Pragian)

Garra Formation

Шаблон:Flag

A lepidocoleid annelid.

Lepidocoleus shurikenus[234]

Sp. nov

Valid

Jacquet et al.

Devonian (Pragian)

Garra Formation

Шаблон:Flag

A lepidocoleid annelid.

Neuropora gigantea[235]

Sp. nov

Valid

Pleș & Schlagintweit in Pleș et al.

Late Jurassic (Kimmeridgian-Tithonian)

Giuvala Formation

Шаблон:Flag

A sponge.

Novakotheca weifangensis[236]

Sp. nov

Valid

Sun, Sun & Zhao

Cambrian (Wuliuan)

Mantou Formation

Шаблон:Flag

A member of Hyolitha belonging to the group Hyolithida.

Oncograptus hastatus[224]

Sp. nov

Valid

Lykova & Sennikov

Ordovician (Dapingian)

Шаблон:Flag

A graptolite belonging to the family Isograptidae.

Palaeocorvospongilla[237]

Gen. et sp. nov

In press

Samant et al.

Late Cretaceous (Maastrichtian)

Deccan Intertrappean Beds

Шаблон:Flag

A sponge belonging to the family Palaeospongillidae. Genus includes new species P. cretacea.

Palaeoparasitylenchus balticus[238]

Sp. nov

Valid

Poinar & Brown

Eocene

Baltic amber

Europe (Baltic Sea region)

A nematode belonging to the family Parasitylenchidae.

Palaeosaccus minus[239]

Sp. nov

Valid

Luo et al.

Cambrian

Shuijingtuo Formation

Шаблон:Flag

A sponge.

Palaeoscoloplos[240]

Gen. et sp. nov

Valid

Knaust

Middle Triassic

Muschelkalk

Шаблон:Flag

An annelid, possibly a member of the family Orbiniidae. Genus includes new species P. triassicus.

Papiliograptus retimarginatus[241]

Sp. nov

Valid

Kozłowska & Bates

Silurian (Homerian)

Шаблон:Flag
Шаблон:Flag

A graptolite belonging to the family Retiolitidae.

Paraclimacograptus crameri[242]

Sp. nov

Valid

Loydell & Abouelresh

Silurian (Aeronian)

Qusaiba Shale Formation

Шаблон:Flag

A graptolite.

Paradoryphoribius[243]

Gen et sp. nov

Mapalo et al.

Miocene

Dominican amber

Шаблон:Flag

A tardigrade. The type species is P. chronocaribbeus.

Paramackenzia[244]

Gen. et sp. nov

Valid

Zhao et al.

Early Cambrian

Шаблон:Flag

A member of the family Mackenziidae (organisms of uncertain phylogenetic placement, possibly stem eumetazoans). Genus includes new species P. canalifera.

Paratetilla milanek[245]

Sp. nov

Valid

Łukowiak in Łukowiak et al.

Middle Eocene

Шаблон:Flag

A sponge belonging to the family Tetillidae.

Pauxillites desolatus[218]

Sp. nov

Valid

Gutiérrez-Marco, Marek & Malinky

Ordovician (Darriwilian)

Шаблон:Flag

A member of Hyolitha.

Pharyngomorpha[231]

Gen. et sp. nov

Valid

Martyshyn & Uchman

Ediacaran

Mogilev Formation

Шаблон:Flag

Possibly a fragment of the pharyngeal basket of a tunicate. The type species is P. reticulata.

Pseudopelagiella[246]

Gen. et comb. nov

Valid

Landing et al.

Cambrian

Kinzers Formation

Шаблон:Flag
(Шаблон:Flag)

A polychaete, likely a member of Sabellida; a new genus for "Pelagiella" exigua Resser & Howell.

Robardetlites[218]

Gen. et sp. nov

Valid

Gutiérrez-Marco, Marek & Malinky

Ordovician (Darriwilian)

Шаблон:Flag

A member of Hyolitha. Genus includes new species R. sevillanus.

Rugosusivitta[247]

Gen. et sp. nov

Valid

Tang et al.

Early Cambrian

Yuhucun Formation

Шаблон:Flag

A ribbon-shaped, bilaterally symmetrical organism, probably a flatworm of uncertain phylogenetic placement. The type species is R. orthogonia.

Saetaspongia jianhensis[248]

Sp. nov

Valid

Ling et al.

Cambrian Stage 4

Balang Formation

Шаблон:Flag

A sponge of uncertain phylogenetic placement, possibly with protomonaxonid affinities.

Selkirkia transita[249]

Sp. nov

Wang et al.

Cambrian Stage 3

Yu'anshan Formation

Шаблон:Flag

A member of Priapulida belonging to the family Selkirkiidae.

Silicofistula[219][250]

Gen. et sp. nov

Valid

Moczydłowska in Moczydłowska et al.

Ediacaran

Stáhpogieddi Formation

Шаблон:Flag

A member of Eumetazoa of uncertain phylogenetic placement. The type species is S. crenulata.

Sinabeatricea[233]

Gen. et sp. nov

Valid

Jeon in Jeon et al.

Ordovician (Katian)

Xiazhen Formation

Шаблон:Flag

A stromatoporoid. Genus includes new species S. luteolus.

Stenothecoides rasettii[251]

Sp. nov

Valid

Johnston & Streng

Cambrian

Burgess Shale

Шаблон:Flag
(Шаблон:Flag)

A member of Stenothecoida (a group of animals of uncertain affinities, possibly pan-brachiopods).

Stenothecoides terraglaciei[252]

Sp. nov

Valid

Peel

Cambrian (Wuliuan)

Henson Gletscher Formation

Шаблон:Flag

A member of Stenothecoida.

Thalassostaphylos[227]

Gen. et sp. nov

Valid

Parry et al.

Cambrian (Drumian)

Marjum Formation

Шаблон:Flag
(Шаблон:Flag)

A member of Ctenophora. The type species is T. elegans.

Theonella alexandriae[245]

Sp. nov

Valid

Łukowiak in Łukowiak et al.

Late Eocene

Шаблон:Flag

A sponge belonging to the family Theonellidae.

Triticispongia giganta[239]

Sp. nov

Valid

Luo et al.

Cambrian

Shuijingtuo Formation

Шаблон:Flag

A sponge.

Turriserpula[253]

Gen. et sp. nov

In press

Dieni & Massari

Early Cretaceous (Berriasian)

Шаблон:Flag

A microserpulid. Genus includes new species T. coralliophila.

Vauxia paraleioia[254]

Sp. nov

In press

Wei et al.

Cambrian Stage 3

Шаблон:Flag

A vauxiid sponge.

Vauxia pregracilenta[254]

Sp. nov

In press

Wei et al.

Cambrian Stage 3

Шаблон:Flag

A vauxiid sponge.

Xinliscolex[255]

Gen. et sp. nov

In press

Zhang

Cambrian (Fortunian)

Шаблон:Flag

An early cycloneuralian. Genus includes new species X. intermedius.

Research

  • Turner (2021) describes vermiform-microstructured masses from approximately 890-million-year-old Little Dal reefs (Stone Knife Formation, Canada), potentially representing the oldest body fossils of sponges (and animals in general) reported to date.[256]
  • A study on the internal anatomical structure and development of Charnia masoni, based on data from specimens interpreted as reflecting different developmental stages, is published by Dunn et al. (2021), who interpret their findings as indicating that rangeomorphs were members of the stem group of Eumetazoa.[257]
  • A study aiming to identify characters of Kimberella, Ikaria, Dickinsonia and Tribrachidium controlled by conserved developmental processes, as well as genetic elements likely responsible for their expression, is published by Evans, Droser & Erwin (2021), who also attempt to determine phylogenetic positions of these taxa relative to extant animals.[258]
  • Structures interpreted as traces of motor activity of Dickinsonia are reported by Ivantsov & Zakrevskaya (2021), who interpret the studied traces as indicating that Dickinsonia was capable of both attachment and mobility.[259]
  • A study on the location of module addition during growth in Dickinsonia costata is published by Evans et al. (2021).[260]
  • A study aiming to determine the feeding mode of Arkarua adami is published by Cracknell et al. (2021).[261]
  • A fossil specimen sharing anatomical features with both archaeocyaths and vauxiids is described from the early Cambrian Guanshan Lagerstätte (South China) by Luo et al. (2021), who suggest that vauxiids were descendants of archaeocyaths rather than Cambrian representatives of horny demosponges.[262]
  • A study on the morphology and affinities of Shaanxilithes is published by Wang et al. (2021).[263]
  • A study aiming to test the hypothesis that the type and extent of calcification and morphology in Cloudina was controlled environmentally, based on data from Cloudina assemblages from localities in the Upper Omkyk Member of the Nama Group (Namibia), is published by Shore & Wood (2021).[264]
  • Taxonomic revision of the Ediacaran tubular fossils Cloudina, Sinotubulites and Conotubus is published by Yang et al. (2021).[265]
  • Shore et al. (2021) report the first three-dimensional, pyritized preservation of soft tissue in Namacalathus hermanastes from the Nama Group (Namibia), and evaluate the implications of this finding for the knowledge of the phylogenetic relationships of this animal.[266]
  • A novel type of agglutinated tube, made of silt-sized particles forming a flanged shape that was previously unknown in the fossil record, is described from the Devonian Ponta Grossa Formation (Brazil) by Becker-Kerber et al. (2021), who identify the studied tubes as belonging to the species Annulitubus mutvei, and note their similarities to tubes made by polychaetes from the family Maldanidae.[267]
  • New specimen of Protowenella flemingi is described from the Cambrian Henson Gletscher Formation (Greenland) by Peel (2021), who interprets the anatomy of this specimen as indicating that Protowenella was a hyolith rather than a mollusc.[268]
  • A new assemblage of fossil eggs, embryos attributable to the early scalidophoran Markuelia, and early post-embryonic developmental stages of camenellans is described from the Cambrian Stage 3 Salanygol Formation (Mongolia) by Steiner et al. (2021).[269]
  • Yang et al. (2021) describe fossil material from the Guanshan biota (China) providing evidence of consistent occurrence of Cambrian priapulan worms (possibly belonging to the genus Eximipriapulus) within the conical shells of hyoliths, representing the first direct evidence of the adoption of a different organism's exoskeleton in the priapulans and within the Paleozoic era.[270]
  • Description of new fossil material of Tabelliscolex hexagonus from the Cambrian Chengjiang biota (Yu'anshan Formation, China), and a study on the phylogenetic affinities of palaeoscolecids, is published by Shi & Howard et al. (2021);[271] the study is subsequently criticized by Smith & Dhungana (2021).[272]
  • Redescription of Stanleycaris hirpex, and a study on the phylogenetic relationships of this species and on the functional specialization of the frontal appendages of this and other stem euarthropods, is published by Moysiuk & Caron (2021).[273]

Other organisms

New taxa

Name Novelty Status Authors Age Type locality Location Notes Images

Amsassia terranovensis[274]

Sp. nov

In press

Lee, Elias & Pratt

Ordovician (Tremadocian)

Watts Bight Formation

Шаблон:Flag
(Шаблон:Flag)

A calcareous alga, possibly representing an extinct group of green algae.

Bicellum[275][276]

Gen. et sp. nov

Strother & Wellman in Strother et al.

Torridonian

Diabaig Formation

Шаблон:Flag

An organism of uncertain phylogenetic placement, possibly an early member of Holozoa. Genus includes new species B. brasieri. Appears to have differentiated multicellularity.

Файл:Billion-years-old Bicellum Brasieri in mature form.jpg

Dictyosphaera smaugi[277]

Sp. nov

Valid

Loron et al.

Mesoproterozoic

Dismal Lakes Group

Шаблон:Flag

An organic-walled microfossil.

Gigarimaneta[278]

Gen. et sp. nov

Valid

Taylor et al.

Ediacaran

Mistaken Point Formation

Шаблон:Flag
(Шаблон:Flag)

An organism growing on the seafloor in a manner similar to Fractofusus and Beothukis. Genus includes new species G. samsoni.

Ladariella[279]

Gen. et sp. nov

Diniz & Leme in Diniz, Leme & Boggiani

Ediacaran

Tamengo Formation

Шаблон:Flag

A macroalga of uncertain phylogenetic placement, possibly related to the family Eoholyniaceae. Genus includes new species L. hidria.

Ladariophyton[279]

Gen. et sp. nov

Diniz & Leme in Diniz, Leme & Boggiani

Ediacaran

Tamengo Formation

Шаблон:Flag

A macroalga of uncertain phylogenetic placement, possibly related to the family Eoholyniaceae. Genus includes new species L. veinosa.

Lagoenaforma[280]

Gen. et sp. nov

In press

Agić et al.

Late Ediacaran

Stáhpogieddi Formation

Шаблон:Flag
(Шаблон:Flag)
Шаблон:Flag
Шаблон:Flag

A flask-shaped microfossil. Genus includes new species L. collaris.

Lanceaphyton[281]

Gen. et sp. nov

In press

Wang et al.

Ediacaran

Шаблон:Flag

A high-level eukaryotic macroalga. Genus includes new species L. xiaojiangensis.

Ostiosphaera[282]

Gen. et sp. nov

In press

Yin et al.

Ediacaran

Doushantuo Formation

Шаблон:Flag

An embryo-like fossil of a eukaryote of uncertain affinities, possibly a holozoan. The type species is O. rara.

Palaeohypothrix[283]

Gen. et sp. nov

Da Silva Paiva & de Souza Carvalho

Early Cretaceous (BerriasianBarremian)

Maracangalha Formation

Шаблон:Flag

A spirotrich. Genus includes new species P. bahiensis.

Quadrimurus[284]

Gen. et sp. nov

Valid

Miao, Moczydłowska & Zhu

Early Mesoproterozoic

Xiamaling Formation

Шаблон:Flag

An organic-walled microfossil. Genus includes new species Q. clavatus.

Rhyniotaxillus minutulus[285]

Sp. nov

Valid

Krings

Early Devonian

Windyfield chert

Шаблон:Flag

A colonial cyanobacterium.

Rhystigonema[286]

Gen. et sp. nov

In press

Krings

Early Devonian

Rhynie chert

Шаблон:Flag

A filamentous cyanobacterium belonging to the family Stigonemataceae. Genus includes new species R. obscurum.

Tamengophyton[279]

Gen. et sp. nov

Diniz & Leme in Diniz, Leme & Boggiani

Ediacaran

Tamengo Formation

Шаблон:Flag

A macroalga of uncertain phylogenetic placement, possibly related to the family Eoholyniaceae. Genus includes new species T. espinosa.

Vikisphaera[287]

Gen. et sp. nov

Valid

Hints, Nõlvak & Liang

Ordovician (Darriwilian)

Loobu Formation

Шаблон:Flag
Шаблон:Flag
Шаблон:Flag
Шаблон:Flag

An organic-walled microfossil of uncertain affinities, possibly representing egg capsules of marine animals. Genus includes new species V. kundana.

Research

  • Well-preserved putative filamentous microfossils, potentially representing the oldest known indigenous subsurface microorganisms with a methane-based metabolism, are described from the ~3.42-billion-year-old subseafloor hydrothermal vein system from the Barberton Greenstone Belt by Cavalazzi et al. (2021).[288]
  • Delarue et al. (2021) describe 3.4 billion years old microfossils preserved with a tail-like structure from the Strelley Pool Formation (Australia), and interpret the tail-like appendage as likely providing early microorganisms with movement capabilities.[289]
  • A study on the preservation of ~ 1 billion years old organic matter in the Lakhanda Lagerstätte (Siberia, Russia) is published by Duda et al. (2021), who interpret this Lagerstätte as evidence of an environment dominated by anaerobic bacteria with no or very little inputs by eukaryotes.[290]
  • Tang et al. (2021) describe dark discoidal, semicircular, or ovate structures preserved on fossil of early Neoproterozoic eukaryotes Tawuia and Sinosabellidites from North China, and interpret these structures as fossils of eukaryotic epibionts that lived on the surface of and may have benefited from an association with their Tawuia and Sinosabellidites hosts.[291]
  • Well-preserved communities of large unbranched filamentous microorganisms, bearing morphological and ecological similarities with large sulfide-oxidizing bacteria such as Beggiatoa, are described from the Ediacaran Itajaí Basin (Brazil) by Becker-Kerber et al. (2021).[292]
  • Ediacaran fossils, including mouldically preserved desiccated microbial mat fossils, Arumberia-type fossils, and associated metre-scale structures, are described from the Gibbett Hill and Ferryland Head formations (Newfoundland, Canada) by McMahon et al. (2021), who interpret the metre-scale structures as fossil biofilm streamers induced by currents.[293]
  • A study on the morphology of Arumberia, based on data from findings from the lower Cambrian Port Lazo Formation (Brittany, France), is published by McMahon et al. (2021), who interpret Arumberia as recording the remains of extinct, sessile filamentous organisms (possibly microbial or algal).[294]
  • Zacaï et al. (2021) attempt to determine the potential timing of establishment of the latitudinal diversity gradient for early Paleozoic acritarchs and its evolution through time .[295]
  • A study on the affinities of archaeocyaths, interpreting them as possible consortia of siphonous green seaweeds and cyanobacteria-like microbes, is published by Kaźmierczak & Kremer (2021).[296]
  • A study on the impact of Earth's orbital eccentricity on the evolution of coccolithophores during the last 2.8 million years is published Beaufort et al. (2021).[297]

History of life in general

  • A study on the taphonomy of eukaryotic organelles, assessing the basis of the view that organelles decay too rapidly to be fossilized and evaluating the plausibility of the claims of organelles preserved in Proterozoic fossils, is published by Carlisle et al. (2021).[298]
  • Evidence of the presence of significant populations of both red and green algae ca. 1.4 billion years ago (600 million years earlier than previously recognized) is reported from the Xiamaling Formation (China) by Zhang et al. (2021).[299]
  • A study on the micro- and ultra-structures and chemical components of embryo-like fossils from the early Ediacaran Weng'an biota (China) is published by Sun et al. (2021).[300]
  • A study on the latitudinal distribution of the macrobiota through the late Ediacaran is published by Boddy et al. (2021).[301]
  • A study on the major biotic transitions in the Phanerozoic fossil record of the benthic marine faunas is published by Rojas et al. (2021), who report evidence of three major biotic transitions (across the end-Cambrian, end-Permian, and mid-Cretaceous boundaries).[302]
  • A study on changes of diversity of skeletonized marine invertebrates in the fossil record, evaluating the impact of dead clades walking on broader trends in Phanerozoic biodiversity, is published by Barnes, Sclafani & Zaffos (2021), who identify 70 invertebrate orders that experienced major diversity losses without recovery, but note that most of these taxa had a long duration after the drop in diversity, and many drops in diversity without recovery were not associated with mass extinction events.[303]
  • A study on the relationship between changes in surface oxygenation and extinction rates of marine animals throughout the Phanerozoic is published by Stockey et al. (2021).[304]
  • A study on shifts in the dynamics of the evolution of body size in marine animals between background intervals and the "Big Five" Phanerozoic extinction events is published by Monarrez, Heim & Payne (2021).[305]
  • A study on changes of nutrient content of planktonic organic matter throughout the Phanerozoic is published by Sharoni & Halevy (2021).[306]
  • New Burgess Shale-type Cambrian paleocommunity, preserving fossil eggs and fossils of members various phyla representing early and middle ontogenetic stages, is described from Haiyan (China) by Yang et al. (2021), who interpret the deposit as either preserving one of the earliest known nurseries in the fossil record, or recording several attempted invasions.[307]
  • Geyer & Landing (2021) report a hitherto unknown Cambrian Stage 3 Lagerstätte from the Amouslek Formation (Morocco), preserving the first relatively abundant fossils with exceptional preservation from the Cambrian of Morocco (and Africa).[308]
  • A study on the relationship between climate changes and origination rates in the marine fossil taxa throughout the last 485 million years is published by Mathes, Kiessling & Steinbauer (2021).[309]
  • A study on the relationship between the rate and magnitude of climate change and the extinction rate of marine animals throughout the last 450 million years is published by Song et al. (2021).[310]
  • A study on Carboniferous and early Permian tetrapod tracks, and on their implications for the knowledge of evolutionary changes in the anatomy of the trackmakers in and locomotion style close to the origin of amniotes, is published by Buchwitz et al. (2021).[311]
  • A study aiming to determine the climatic preferences of major Permo-Triassic tetrapod groups is published by Liu, Angielczyk & Abdala (2021).[312]
  • A study on the impact of Permian mass extinctions on continental invertebrate infauna, based on data from the Iberian Basin (central Spain), is published by Buatois et al. (2021), who report evidence of a dramatic decrease in bioturbation intensity on land by the end of the Capitanian, coinciding with an increase in weathering intensity and acidic conditions, and a collapse in plant communities spanning the late Permian–Early Triassic in the Iberian Basin.[313]
  • A review of the state of research on the Capitanian mass extinction event in the Karoo Basin (South Africa) is published by Day & Rubidge (2021).[314]
  • Evidence from tetrapod fossil record from the Karoo Basin (South Africa) indicative of a protracted (~1 Ma) extinction on land during the Permian-Triassic transition is presented by Viglietti et al. (2021).[315]
  • Evidence of two pulses of extinction at the Permian–Triassic boundary caused by different environmental triggers is reported from the Liangfengya section in the South China Block by Li et al. (2021).[316]
  • Evidence of algal and bacterial blooms following forest ecosystem collapse during the Permian–Triassic extinction event is reported from the Sydney Basin (Australia) by Mays et al. (2021), who interpret their findings as indicating that the proliferation of microbial communities was both a symptom of ecosystem collapse, and a cause of its delayed recovery in the aftermath of the Permian–Triassic mass extinction.[317]
  • Smith et al. (2021) describe diverse assemblages of Early Triassic marine organisms from three new sites of the same age as the Paris Canyon exposures, and another slightly younger site, from Nevada and Idaho (United States), providing information on the recovery of marine biotas in the aftermath of the Permian–Triassic extinction event.[318]
  • A study on the recovery of marine level-bottom communities in the aftermath of the Permian–Triassic extinction event, focusing on recovery during the Middle Triassic, is published by Friesenbichler, Hautmann & Bucher (2021).[319]
  • Revision of the Triassic record of tetrapod tracks is published by Klein & Lucas (2021).[320]
  • A study on the diversity dynamics and evolution of the functional morphology of tetrapod herbivores throughout the Triassic and Early Jurassic is published by Singh et al. (2021).[321]
  • Marchetti et al. (2021) revise the tetrapod (including dinosauromorph) footprint assemblage from the Quarziti del Monte Serra Formation (Ladinian of Italy), and interpret this assemblage and other findings of Ladinian dinosauromorph footprints as evidence of wide dispersal of dinosauromorphs as early as the Middle Triassic.[322]
  • Description of a rich assemblage of marine taxa from the Carnian Polzberg Lagerstätte (Austria) is published by Lukeneder & Lukeneder (2021).[323]
  • A study aiming to determine the relationship between the development of the Jehol Biota in northeast China and the destruction of the North China Craton in the Early Cretaceous is published by Zhou et al. (2021).[324]
  • The first evidence of a Late Cretaceous terrestrial community in the Caribbean, including fossil material of a midsize pterosaur and remains of plants belonging to the families Cupressaceae and Lauraceae, is reported from three upper Campanian–lower Maastrichtian localities in Cuba by Viñola-López et al. (2021).[325]
  • A study on the timing of the recovery of the biological pump and marine plankton diversity in the aftermath of the Cretaceous–Paleogene extinction event is published by Birch et al. (2021).[326]
  • A study on the impact of tectonic evolution in the Tethyan region on the evolution and diversity patterns of Eurasian animals throughout the Cenozoic is published by Zhao, Hou & Li (2021).[327]
  • Zouhri et al. (2021) describe a diverse vertebrate fauna from the Eocene (Bartonian) Aridal Formation (Western Sahara), including 12 species of cartilaginous fishes, at least three species of turtles, at least two longirostrine crocodylian taxa, the oldest record of Pelagornis reported to date, and a proboscidean possibly belonging to the genus Barytherium.[328]
  • Garrouste et al. (2021) report the discovery of Cretaceous and Miocene fossil assemblages from New Caledonia, providing new information on the diversity of fossil plants and insects from this island.[329]
  • Synopsis of the fossil vertebrate assemblages of the Pisco Formation (Peru), and a study on their implications for the knowledge of the Humboldt Current Ecosystem during the Miocene, is published by Collareta et al. (2021).[330]
  • Rich middle Miocene rainforest biome (the Zhangpu biota) preserved in amber and associated sedimentary rocks is reported from the Fotan Group (southeastern China) by Wang et al. (2021).[331]
  • Description of non-mammal vertebrate fauna from the Miocene (Messinian) Monticino Quarry (Italy), including the oldest known records of the javelin sand boa or a related species, snakes belonging to the genus Malpolon and an unambiguous bustard reported to date, is published by Villa et al. (2021).[332]
  • A study on the age of escorias (glassy rock fragments similar to volcanic scoriae, likely products of extraterrestrial impacts) collected along the Pampean Atlantic coast from the "Irene" and Chapadmalal Formations (Argentina), and on their implications for the knowledge of the timing of late Miocene–Pliocene faunal succession in the Pampean Region, is published by Prevosti et al. (2021).[333]
  • A study on the age of the most recent Pleistocene megafaunal specimens from Cloggs Cave (Australia), and on its implications for the knowledge of the timing and causes of Late Pleistocene extinctions of Australian megafauna, is published by David et al. (2021).[334]
  • A study aiming to determine whether a significant relationship can be detected between demographic susceptibility to extinction of members of Quaternary megafauna of Sahul and their extinction chronology inferred from their fossil record is published by Bradshaw et al. (2021).[335]
  • A study aiming to determine whether the fossil record indicates that the arrival of hominins on islands in the Pleistocene was coincident with the disappearance of insular taxa is published by Louys et al. (2021).[336]
  • A study on ancient environmental DNA of plants and animals recovered from sediments from sites distributed across much of the Arctic, covering the past 50 thousand years, is published by Wang et al. (2021), who interpret their findings as indicative of a relatively homogeneous steppe–tundra flora dominating the Arctic during the Last Glacial Maximum, followed by regional divergence of vegetation during the Holocene, as well as providing evidence of the survival of the woolly rhinoceros in northeast Kolyma as late as approximately 9.8 ka and the survival of mammoths in North America and Siberia into the Early Holocene (as late as approximately 3.9 ka in the area of the Taymyr Peninsula), and providing evidence of a previously unsampled mitochondrial lineage of mammoths.[337]
  • Murchie et al. (2021) present a 30,000-year sedimentary ancient DNA record from permafrost silts in the Klondike region of Yukon (Canada), and interpret their findings as indicative of a substantial turnover in ecosystem composition between 13,500 and 10,000 calendar years ago with the replacement of the steppe-tundra ecosystem by woody shrubs, as well as indicative of persistence of North American horses and woolly mammoths for thousands of years after their supposed disappearance from the fossil record.[338]
  • A study on the chronology of Late Pleistocene shrub expansion and megafauna extinctions in eastern Beringia is published by Monteath et al. (2021), who interpret their findings as indicating that the postglacial expansion of shrub tundra preceded the regional decline of populations of large mammal grazers.[339]
  • A study on the extinction dynamics of the elephant birds and Malagasy hippos is published by Hansford et al. (2021), who interpret their findings as indicating that these animals persisted for millennia after first human arrival on Madagascar, that their communities collapsed suddenly ~1200-900 BP, and that their extinctions were closely correlated in time with intensive conversion of forests to grassland, probably resulting from human shift to agro-pastoralism.[340]
  • A study aiming to determine how observed extinctions in the geological past can be predicted from the interaction of long-term temperature trends with short-term climate change is published by Mathes et al. (2021).[341]
  • A study on the impact of the Capitanian mass extinction event, Permian–Triassic extinction event and Triassic–Jurassic extinction event on terrestrial and freshwater ecosystems, aiming to quantify community resistance during the extinction events and to determine ecological dynamics of communities before and after these extinctions, is published by Huang et al. (2021).[342]
  • A study on correlations between fossilization potential and food web features, aiming to determine how fossilization impacts inferences of ancient community structure, is published by Shaw et al. (2021).[343]
  • A study on the drilling predation pressure on sea urchins across the Mesozoic and Cenozoic is published by Petsios et al. (2021), who present evidence indicative of the Cenozoic intensification of this predation, and argue that the Mesozoic marine revolution was more likely a series of asynchronous processes with variable significance across different groups of predators and preys, rather than a single synchronized ecosystem-wide event.[344]
  • A study on the spatial biodiversity dynamics of unicellular marine plankton throughout the Cenozoic, aiming to test the generality of the "out of the tropics" hypothesis (positing that the tropics are both a cradle and source of biodiversity for extratropical regions), is published by Raja & Kiessling (2021).[345]
  • A study on the evolution of ecophysiological adaptations to life in the sea in extant and fossil marine tetrapods (excluding birds) is published by Motani & Vermeij (2021).[346]

Other research

  • Mißbach et al. (2021) report the existence of indigenous organic molecules and gases in primary fluid inclusions in c. 3.5-billion-year-old barites from the Dresser Formation (Pilbara Craton, Australia), providing evidence of the organic composition of primordial fluids that were available for the early microbes.[347]
  • A study on the 3.4-billion-year old organic films from the Buck Reef Chert (Kaapvaal Craton, South Africa) is published by Alleon et al. (2021), who interpret their findings as indicating that early Archean organic films carry chemical information directly related to their original molecular compositions, and evaluate the implications of their finding for the knowledge of the initial chemical nature of organic microfossils found in ancient rocks.[348]
  • A study on the evolution of marine dissolved organic carbon concentrations is published by Fakhraee et al. (2021), who interpret their findings as indicating that the overall size of the marine dissolved organic carbon reservoir has likely undergone very little variation through Earth's history, casting doubt on previously hypothesized links between marine dissolved organic carbon levels and the emergence and radiation of early animals.[349]
  • A study on the age of the Ediacaran stratigraphic successions in South China, and on its implications for the knowledge of the timing of the rise and early evolution of complex macroscopic life, is published by Yang et al. (2021).[350]
  • A study on the carbon isotopic composition of marine carbonates and on the age of the Ediacaran Nama Group (Namibia) and other geological formations from the Ediacaran-Cambrian transition around the world, and on their implications for the knowledge of the early radiation of animals, is published by Bowyer et al. (2021).[351]
  • A study on the timing and sequence of events through the early Darriwilian leading to the Great Ordovician Biodiversification Event is published by Rasmussen, Thibault & Rasmussen (2021), who interpret their findings as refuting the proposed link between the Ordovician meteor event and the icehouse conditions preceding the Ordovician radiation, and indicating that the meteorite fallout postdated both the onset of glaciation and the onset of the Ordovician radiation.[352]
  • A study on the impact of volcanism-related delivery of the nutrient phosphorus to the Late Ordovician ocean on global cooling and Late Ordovician mass extinction is published by Longman et al. (2021).[353]
  • A study evaluating the validity of the Devonian bioregionalization first proposed by Boucot, Johnson & Talent (1969)[354] is published by Dowding, Ebach & Madroviev (2021).[355]
  • Evidence of prolonged and repeated oxygen stress in the Appalachian Basin associated with the Late Devonian extinctions is presented by Boyer et al. (2021).[356]
  • Rakociński et al. (2021) report very large anomalous mercury spikes from the south-western part of Tian Shan (Uzbekistan), and interpret this finding as evidence of intensive volcanic activity both predating and occurring during the Hangenberg Crisis.[357]
  • Evidence from the South China Block indicative of extensive felsic volcanic activity coincident with the Permian–Triassic extinction event is presented by Zhang et al. (2021), who interpret their findings as indicating that felsic volcanism in South China was a key contributor to the environmental deterioration that led to the Permian–Triassic extinction event.[358]
  • Evidence from the southern Karoo Basin of South Africa indicative of at least four atmospheric carbon dioxide spikes coinciding with extinctions on land and at sea from the Late Permian to the Middle Triassic is presented by Retallack (2021).[359]
  • Lu et al. (2021) present a record of volcanism and environmental changes from Carnian lake succession of the Jiyuan Basin (North China), and interpret their findings as indicative of four pulses of volcanism which were probably responsible for the global carbon isotope excursions that marked the Carnian pluvial episode and drove major environmental changes in the Jiyuan Basin.[360]
  • A study evaluating whether fuel-driven changes to fire activity during the Cretaceous period had the ability to counteract rising atmospheric oxygen at this time is published by Belcher et al. (2021), who argue that alteration of fire feedbacks driven by the rise of the flowering plants likely lowered atmospheric oxygen levels from ~30% to 25% by the end of the Cretaceous.[361]
  • White & Campione (2021) describe a workflow in which three-dimensional surface profiles of fragmentary fossils can be quantitatively compared to better-known exemplars in order to identify fragmentary fossils, and apply this workflow to megaraptorid theropod unguals from the Cretaceous of Australia.[362]
  • A study aiming to test whether histological characters can be used to assign bones to individuals within a quarry, using sauropod dinosaur material from two adjacent Morrison quarries in the Bighorn Basin (Wyoming, United States) as a case study, is published by Wiersma-Weyand et al. (2021).[363]
  • A study on diverse amniotic eggshells from the Wido Volcanics (Upper Cretaceous, South Korea), evaluating their utility for assessments of the paleothermometry of the sedimentary deposits, is published by Choi et al. (2021).[364]
  • A study on the age and duration of the Lower Cretaceous Yixian Formation (China) is published by Zhong et al. (2021).[365]
  • A study on the age of the Jiufotang Formation outcrops in the Jianchang Basin (Liaoning, China) is published by Yu et al. (2021).[366]
  • A study on the elevation and mean annual temperature of the Sihetun area (Liaoning, China) in the Early Cretaceous, when the area was inhabited by feathered dinosaurs, is published by Zhang, Yin & Wang (2021), who interpret their findings as indicative of a high altitude and cold habitat with frozen winters for the Jehol Biota in this area, and evaluate possible implications of such habitat for the evolution of the feathered characteristic of the dinosaurs.[367]
  • A study on possible impact of taphonomic biases on preservation of small-bodied dinosaurs and mammals from the Hell Creek and Lance formations, and on its implications for the knowledge of diversity and abundance of small-bodied taxa from these formations, is published by Brown et al. (2021).[368]
  • Goderis et al. (2021) report new data revealing a positive iridium anomaly within the peak-ring sequence of the Chicxulub impact structure, and interpret this finding as conclusively tying Chicxulub to the global iridium layer and Cretaceous-Paleogene boundary sections worldwide, confirming the link between crater formation and the iridium peak detected in these sections.[369]
  • DePalma et al. (2021) present data from histological and histo-isotopic analyses of fossil fish from the Tanis fossil site (North Dakota, United States), interpreted as indicating that the end-Cretaceous Chicxulub impact occurred during boreal Spring/Summer, shortly after the spawning season for fish and most continental taxa.[370]
  • A study on the taphonomy of marine vertebrate fossils from the Miocene Pisco Formation (Peru), aiming to determine possible causes of their exceptional preservation, is published by Bosio et al. (2021).[371]
  • A study on Middle Miocene microfloral assemblages from ten localities in the Madrid Basin (Spain), providing evidence of prevalence of open habitats with grass-dominated, savannah-like vegetation under a warm and semi-arid climatic regime in the Iberian Peninsula in the Middle Miocene, is published by Casas-Gallego et al. (2021).[372]
  • A study aiming to determine whether a strong link can be established between stable carbon isotopes of tooth enamel of herbivores and vegetation structure in present African ecosystems, and whether enamel stable carbon isotopes of fossil herbivores are useful for making inferences about Plio-Pleistocene vegetation structure in Africa and the environmental context of hominin evolution, is published by Robinson et al. (2021).[373]
  • A study on environmental changes in East Africa at the time of the extinction of Paranthropus boisei is published by Quinn & Lepre (2021), who report evidence of a significant reduction in C4 grasslands during Mid-Pleistocene Transition, and argue that this reduction might have escalated dietary competition amongst the abundant C4-feeders and influenced P. boisei's demise;[374] their conclusions are subsequently contested by Patterson et al. (2022).[375][376]
  • Evidence from Chitimwe Beds (northern Malawi), indicating that in the late Pleistocene early modern humans fundamentally altered local landscapes and ecology using fire, is presented by Thompson et al. (2021).[377]
  • A study on the climate and environments in the Guadix-Baza Basin (Spain) from the Pliocene to the Middle Pleistocene, aiming to reconstruct environments inhabited by some of the earliest humans who dispersed into Europe, is published by Saarinen et al. (2021).[378]
  • A study on the Early Pleistocene environment of the Nihewan Basin (China), as indicated by stable isotope data from tooth enamel of mammals from the Madigou site, is published by Xu et al. (2021).[379]
  • A study on environmental changes in Southeast Asia at the time of the Pleistocene turnovers of hominin species culminating with the arrival of Homo sapiens in the area, based on data from mammal fossils from five faunas from Vietnam and Laos whose ages ranged from MIS 6–5 to MIS 3–2, and aiming to determine how the climate changes that occurred during the Late Pleistocene might have influenced the adaptation of the first H. sapiens in the area, is published by Bacon et al. (2021).[380]
  • A study on the relationship between the severity of late Quaternary megaherbivore extinctions and fire activity in grassy ecosystems is published by Karp et al. (2021).[381]
  • Ellis et al. (2021) examine current biodiversity patterns in relation to distribution of human populations and land use over the past 12,000 years, and argue that as early as 12,000 years ago nearly three quarters of Earth's land was inhabited and shaped by human societies.[382]
  • Alleon et al. (2021) revise reports of organic molecules in animal fossils, and argue that purported signatures of organic molecules are in reality instrumental artefacts resulting from intense background luminescence;[383] their conclusions are subsequently contested by Wiemann & Briggs (2022).[384]
  • A study aiming to assess how methods used to determine diversification rate variation through time perform when applied to entirely extinct groups, applying them to ornithischian dinosaurs, is published by Černý, Madzia & Slater (2021).[385]
  • A new method for estimating dimorphism levels in fossil assemblages is presented by Sasaki et al. (2021).[386]
  • A methodological schema for investigating evolvability in the fossil record is proposed by Love et al. (2021).[387]
  • Didier & Laurin (2021) present a method to compute the distribution of the extinction time of a given set of taxa, and apply this method to the study of the extinction time of three Permo-Carboniferous synapsid taxa (Ophiacodontidae, Edaphosauridae and Sphenacodontidae).[388]
  • A study assessing whether resin impregnation of sediment blocks interferes with the retrieval of ancient DNA from sediments, and evaluating ancient mammalian DNA preservation in Pleistocene sediment blocks from 13 archaeological sites in Europe, Asia, Africa, and North America, is published by Massilani et al. (2021).[389]
  • A study exploring the causal relationship between the global distribution of fossil occurrence data and the legacy of colonialism and associated socioeconomic factors, and evaluating the implications of that relationships for the knowledge of past biodiversity, is published by Raja et al. (2021).[390]

Paleoclimate

  • Scotese et al. (2021) estimate how global temperatures have changed during the last 540 million years.[391]
  • A high-resolution proxy record of Late Cambrian and Ordovician climate is presented by Goldberg et al. (2021).[392]
  • A study on changes in weathering intensity and temperature along a temperate to subpolar southeastern margin of Gondwana (eastern margin of present-day Australia) across the end-Permian extinction is published by Frank et al. (2021).[393]
  • A study on the atmospheric CO2 levels during the Permian–Triassic transition, based on data from fossil plant remains from sedimentary successions in southwestern China, is published by Wu et al. (2021), who present evidence of a six-fold increase of atmospheric pCO2 during the Permian–Triassic mass extinction.[394]
  • A study on the source, pace and total amount of CO2 emissions during the Permian–Triassic transition is published by Cui et al. (2021), who interpret their findings as suggesting that rapid and massive amount of largely volcanic CO2 emission was necessary to drive the observed pattern of carbon isotope excursions, the abrupt decline in surface ocean pH and global temperature increase, and was likely the main cause of the end-Permian mass extinction.[395]
  • A study on the climate of the Lufeng area (China) during the Early Jurassic, and on the relationship between the global distribution of dinosaur fossils and climate during the Jurassic, is published by Shen et al. (2021).[396]
  • A study on atmospheric carbon dioxide concentration levels during the late Albian, as indicated by stomata characteristics of conifers Pseudofrenelopsis gansuensis and Pseudofrenelopsis dalatzensis from the Dalazi Formation (China), is published by Li, Yang & Zhu (2021).[397]
  • Evidence of the presence of a terrestrial climate barrier in the Western Interior Basin of North America during the final 15 million years of the Cretaceous, dividing the Western Interior Basin into warm southern and cool northern biomes, is presented by Burgener et al. (2021), who also report evidence indicating that the biogeographical distribution of plants was heavily influenced by the presence of this temperature transition zone.[398]
  • De Winter et al. (2021) present reconstructions of monthly sea surface temperatures at around 50 °N latitude about 78 million years ago, based on data from oyster and rudist shells from the Kristianstad Basin (Sweden).[399]
  • A study on CO2 contents of early Deccan Traps lavas, aiming to determine whether early Deccan magmatism triggered the warming event during the latest Maastrichtian, is published by Hernandez Nava et al. (2021).[400]
  • Vento et al. (2021) estimate parameters of the Paleogene to Neogene climate on the basis of data from fossil leaves from the Río Turbio and Río Guillermo formations in southern South America (Argentina).[401]
  • A study aiming to evaluate the fit of molecular phylogenetic and biogeographic data from extant animals and models regarding the age of formation of the Amazon fluvial system is published by Méndez-Camacho, Leon-Alvarado & Miranda-Esquivel (2021).[402]
  • 10-million-year long proxy record of Arabian climate is developed by Böhme et al. (2021), who report evidence indicative of a sustained period of hyperaridity in the Pliocene and a number of transient periods of hyperaridity in northern Arabia during the late Miocene which were out of phase with those in North Africa, and argue that these desert dynamics had a strong control on large-scale mammalian dispersals between Africa and Eurasia.[403]
  • A study aiming to estimate the tolerance to low precipitation and aridity that would have been required for early humans to successfully exit Africa and to determine the timings of climatic windows out of Africa for humans, based on data from paleoclimate simulations of the last 300,000 years, is published by Beyer et al. (2021).[404]
  • A study on climate changes in eastern Africa over the past 200,000 years, evaluating their possible impact on the mobility and dispersal of early Homo sapiens, is published by Schaebitz et al. (2021).[405]
  • A study aiming to reconstruct summer and winter temperatures in the Late Pleistocene when Neanderthals were using the site of La Ferrassie (France), based on data from oxygen isotope measurements of bovid tooth enamel, is published by Pederzani et al. (2021).[406]
  • A study on local seasonal temperatures in the area of the Bacho Kiro cave (Bulgaria) in the Initial Upper Paleolithic, and on its implications for the knowledge whether early presence of Homo sapiens in Europe was contingent on warm climates, is published by Pederzani et al. (2021).[407]
  • Data from analyses and modelling of noble gases in groundwater, indicating that the low-altitude, low-to-mid-latitude land surface (45 degrees south to 35 degrees north) was about 6 °C cooler during the Last Glacial Maximum than during the Late Holocene, is presented by Seltzer et al. (2021).[408]
  • Osman et al. (2021) reconstruct surface temperature changes spanning the Last Glacial Maximum to present at 200-year resolution.[409]

References

Шаблон:Reflist

  1. Шаблон:Cite journal
  2. Шаблон:Cite journal
  3. Шаблон:Cite journal
  4. Шаблон:Cite journal
  5. Шаблон:Cite journal
  6. 6,0 6,1 Шаблон:Cite journal
  7. Шаблон:Cite journal
  8. Шаблон:Cite journal
  9. Шаблон:Cite journal
  10. Шаблон:Cite journal
  11. Шаблон:Cite journal
  12. Шаблон:Cite journal
  13. Шаблон:Cite journal
  14. Шаблон:Cite journal
  15. Шаблон:Cite journal
  16. Шаблон:Cite journal
  17. 17,00 17,01 17,02 17,03 17,04 17,05 17,06 17,07 17,08 17,09 17,10 17,11 17,12 17,13 17,14 17,15 Шаблон:Cite journal
  18. 18,0 18,1 Шаблон:Cite journal
  19. 19,00 19,01 19,02 19,03 19,04 19,05 19,06 19,07 19,08 19,09 19,10 19,11 19,12 19,13 19,14 19,15 19,16 19,17 19,18 19,19 19,20 Шаблон:Cite journal
  20. 20,0 20,1 Шаблон:Cite journal
  21. Шаблон:Cite journal
  22. 22,0 22,1 22,2 22,3 22,4 22,5 Шаблон:Cite journal
  23. Шаблон:Cite journal
  24. Шаблон:Cite journal
  25. Шаблон:Cite journal
  26. 26,0 26,1 26,2 Шаблон:Cite journal
  27. Шаблон:Cite journal
  28. Шаблон:Cite journal
  29. Шаблон:Cite journal
  30. Шаблон:Cite journal
  31. 31,0 31,1 31,2 Шаблон:Cite journal
  32. 32,0 32,1 Шаблон:Cite journal
  33. Шаблон:Cite journal
  34. Шаблон:Cite journal
  35. Шаблон:Cite journal
  36. Шаблон:Cite journal
  37. Шаблон:Cite journal
  38. Шаблон:Cite journal
  39. Шаблон:Cite journal
  40. Шаблон:Cite journal
  41. Шаблон:Cite journal
  42. Шаблон:Cite journal
  43. 43,0 43,1 Шаблон:Cite journal
  44. 44,0 44,1 44,2 44,3 44,4 44,5 44,6 Шаблон:Cite journal
  45. Шаблон:Cite journal
  46. 46,0 46,1 46,2 Шаблон:Cite journal
  47. 47,0 47,1 47,2 Шаблон:Cite journal
  48. Шаблон:Cite journal
  49. Шаблон:Cite journal
  50. 50,0 50,1 50,2 50,3 50,4 Шаблон:Cite journal
  51. 51,0 51,1 Шаблон:Cite journal
  52. Шаблон:Cite journal
  53. Шаблон:Cite journal
  54. 54,0 54,1 Шаблон:Cite journal
  55. Шаблон:Cite journal
  56. 56,0 56,1 56,2 Шаблон:Cite journal
  57. Шаблон:Cite journal
  58. Шаблон:Cite journal
  59. Шаблон:Cite journal
  60. Шаблон:Cite journal
  61. Шаблон:Cite journal
  62. Шаблон:Cite journal
  63. Шаблон:Cite journal
  64. Шаблон:Cite journal
  65. Шаблон:Cite journal
  66. Шаблон:Cite journal
  67. Шаблон:Cite journal
  68. Шаблон:Cite journal
  69. Шаблон:Cite journal
  70. 70,00 70,01 70,02 70,03 70,04 70,05 70,06 70,07 70,08 70,09 70,10 Шаблон:Cite book
  71. 71,0 71,1 Шаблон:Cite journal
  72. 72,0 72,1 72,2 72,3 72,4 72,5 Шаблон:Cite journal
  73. Шаблон:Cite journal
  74. Шаблон:Cite journal
  75. Шаблон:Cite journal
  76. 76,0 76,1 76,2 76,3 Шаблон:Cite journal
  77. 77,0 77,1 Шаблон:Cite journal
  78. 78,0 78,1 78,2 78,3 78,4 Шаблон:Cite journal
  79. 79,0 79,1 79,2 79,3 Шаблон:Cite journal
  80. 80,0 80,1 80,2 Шаблон:Cite journal
  81. Шаблон:Citation
  82. 82,0 82,1 Шаблон:Cite journal
  83. Шаблон:Cite journal
  84. Шаблон:Cite journal
  85. 85,0 85,1 Шаблон:Cite journal
  86. 86,0 86,1 86,2 Шаблон:Cite journal
  87. Шаблон:Cite journal
  88. Шаблон:Cite journal
  89. Шаблон:Cite journal
  90. Шаблон:Cite journal
  91. 91,0 91,1 Шаблон:Cite journal
  92. Шаблон:Cite journal
  93. Шаблон:Cite journal
  94. Шаблон:Cite journal
  95. Шаблон:Cite journal
  96. Шаблон:Cite journal
  97. Шаблон:Cite journal
  98. Шаблон:Cite journal
  99. Шаблон:Cite journal
  100. Шаблон:Cite journal
  101. Шаблон:Cite book
  102. Шаблон:Cite journal
  103. Шаблон:Cite journal
  104. Шаблон:Cite journal
  105. Шаблон:Cite journal
  106. Шаблон:Cite journal
  107. 107,0 107,1 107,2 107,3 107,4 107,5 107,6 Шаблон:Cite journal
  108. Шаблон:Cite journal
  109. 109,00 109,01 109,02 109,03 109,04 109,05 109,06 109,07 109,08 109,09 109,10 109,11 109,12 109,13 109,14 Шаблон:Cite journal
  110. 110,0 110,1 110,2 110,3 110,4 110,5 110,6 Шаблон:Cite journal
  111. 111,0 111,1 111,2 Шаблон:Cite journal
  112. Шаблон:Cite journal
  113. Шаблон:Cite journal
  114. 114,0 114,1 114,2 Шаблон:Cite journal
  115. Шаблон:Cite journal
  116. 116,0 116,1 Шаблон:Cite journal
  117. Шаблон:Cite journal
  118. Шаблон:Cite journal
  119. Шаблон:Cite journal
  120. Шаблон:Cite journal
  121. 121,0 121,1 121,2 Шаблон:Cite journal
  122. Шаблон:Cite journal
  123. Шаблон:Cite journal
  124. Шаблон:Cite journal
  125. Шаблон:Cite journal
  126. Шаблон:Cite journal
  127. Шаблон:Cite journal
  128. Шаблон:Cite journal
  129. Шаблон:Cite journal
  130. Шаблон:Cite journal
  131. Шаблон:Cite journal
  132. Шаблон:Cite journal
  133. Шаблон:Cite journal
  134. Шаблон:Cite journal
  135. Шаблон:Cite journal
  136. 136,0 136,1 Шаблон:Cite journal
  137. Шаблон:Cite journal
  138. Шаблон:Cite journal
  139. Шаблон:Cite journal
  140. Шаблон:Cite journal
  141. Шаблон:Cite journal
  142. Шаблон:Cite journal
  143. Шаблон:Cite journal
  144. Шаблон:Cite journal
  145. Шаблон:Cite journal
  146. Шаблон:Cite journal
  147. Шаблон:Cite journal
  148. Шаблон:Cite journal
  149. Шаблон:Cite journal
  150. Шаблон:Cite journal
  151. Шаблон:Cite journal
  152. Шаблон:Cite journal
  153. Шаблон:Cite journal
  154. Шаблон:Cite journal
  155. Шаблон:Cite journal
  156. Шаблон:Cite journal
  157. Шаблон:Cite journal
  158. Шаблон:Cite journal
  159. Шаблон:Cite journal
  160. Шаблон:Cite journal
  161. Шаблон:Cite journal
  162. Шаблон:Cite journal
  163. Шаблон:Cite journal
  164. Шаблон:Cite journal
  165. Шаблон:Cite journal
  166. Шаблон:Cite journal
  167. Шаблон:Cite journal
  168. Шаблон:Cite journal
  169. Шаблон:Cite journal
  170. Шаблон:Cite journal
  171. Шаблон:Cite journal
  172. Шаблон:Cite journal
  173. Шаблон:Cite journal
  174. Шаблон:Cite journal
  175. Шаблон:Cite journal
  176. Шаблон:Cite journal
  177. 177,0 177,1 Шаблон:Cite journal
  178. 178,0 178,1 Шаблон:Cite journal
  179. Шаблон:Cite journal
  180. Шаблон:Cite journal
  181. Шаблон:Cite journal
  182. Шаблон:Cite journal
  183. Шаблон:Cite journal
  184. Шаблон:Cite journal
  185. Шаблон:Cite journal
  186. Шаблон:Cite journal
  187. Шаблон:Cite journal
  188. Шаблон:Cite journal
  189. Шаблон:Cite journal
  190. Шаблон:Cite journal
  191. Шаблон:Cite journal
  192. Шаблон:Cite journal
  193. Шаблон:Cite journal
  194. Шаблон:Cite journal
  195. Шаблон:Cite journal
  196. Шаблон:Cite journal
  197. Шаблон:Cite journal
  198. Шаблон:Cite journal
  199. Шаблон:Cite journal
  200. Шаблон:Cite journal
  201. Шаблон:Cite journal
  202. Шаблон:Cite journal
  203. Шаблон:Cite journal
  204. Шаблон:Cite journal
  205. Шаблон:Cite journal
  206. Шаблон:Cite journal
  207. Шаблон:Cite journal
  208. Шаблон:Cite journal
  209. Шаблон:Cite journal
  210. Шаблон:Cite journal
  211. Шаблон:Cite journal
  212. Шаблон:Cite journal
  213. Шаблон:Cite journal
  214. Шаблон:Cite journal
  215. Шаблон:Cite journal
  216. Шаблон:Cite journal
  217. Шаблон:Cite journal
  218. 218,0 218,1 218,2 218,3 Шаблон:Cite journal
  219. 219,0 219,1 219,2 Шаблон:Cite journal
  220. 220,0 220,1 220,2 Шаблон:Cite journal
  221. Шаблон:Cite journal
  222. Шаблон:Cite journal
  223. Шаблон:Cite journal
  224. 224,0 224,1 Шаблон:Cite journal
  225. Шаблон:Cite journal
  226. Шаблон:Cite journal
  227. 227,0 227,1 Шаблон:Cite journal
  228. Шаблон:Cite journal
  229. Шаблон:Cite journal
  230. Шаблон:Cite journal
  231. 231,0 231,1 Шаблон:Cite journal
  232. Шаблон:Cite journal
  233. 233,0 233,1 233,2 Шаблон:Cite journal
  234. 234,0 234,1 Шаблон:Cite journal
  235. Шаблон:Cite journal
  236. Шаблон:Cite journal
  237. Шаблон:Cite journal
  238. Шаблон:Cite journal
  239. 239,0 239,1 Шаблон:Cite journal
  240. Шаблон:Cite journal
  241. Шаблон:Cite journal
  242. Шаблон:Cite journal
  243. Шаблон:Cite journal
  244. Шаблон:Cite journal
  245. 245,0 245,1 Шаблон:Cite journal
  246. Шаблон:Cite journal
  247. Шаблон:Cite journal
  248. Шаблон:Cite journal
  249. Шаблон:Cite journal
  250. Шаблон:Cite journal
  251. Шаблон:Cite journal
  252. Шаблон:Cite journal
  253. Шаблон:Cite journal
  254. 254,0 254,1 Шаблон:Cite journal
  255. Шаблон:Cite journal
  256. Шаблон:Cite journal
  257. Шаблон:Cite journal
  258. Шаблон:Cite journal
  259. Шаблон:Cite journal
  260. Шаблон:Cite journal
  261. Шаблон:Cite journal
  262. Шаблон:Cite journal
  263. Шаблон:Cite journal
  264. Шаблон:Cite journal
  265. Шаблон:Cite journal
  266. Шаблон:Cite journal
  267. Шаблон:Cite journal
  268. Шаблон:Cite journal
  269. Шаблон:Cite journal
  270. Шаблон:Cite journal
  271. Шаблон:Cite journal
  272. Шаблон:Cite journal
  273. Шаблон:Cite journal
  274. Шаблон:Cite journal
  275. Шаблон:Cite journal
  276. Шаблон:Cite news
  277. Шаблон:Cite journal
  278. Шаблон:Cite journal
  279. 279,0 279,1 279,2 Шаблон:Cite journal
  280. Шаблон:Cite journal
  281. Шаблон:Cite journal
  282. Шаблон:Cite journal
  283. Шаблон:Cite journal
  284. Шаблон:Cite journal
  285. Шаблон:Cite journal
  286. Шаблон:Cite journal
  287. Шаблон:Cite journal
  288. Шаблон:Cite journal
  289. Шаблон:Cite journal
  290. Шаблон:Cite journal
  291. Шаблон:Cite journal
  292. Шаблон:Cite journal
  293. Шаблон:Cite journal
  294. Шаблон:Cite journal
  295. Шаблон:Cite journal
  296. Шаблон:Cite journal
  297. Шаблон:Cite journal
  298. Шаблон:Cite journal
  299. Шаблон:Cite journal
  300. Шаблон:Cite journal
  301. Шаблон:Cite journal
  302. Шаблон:Cite journal
  303. Шаблон:Cite journal
  304. Шаблон:Cite journal
  305. Шаблон:Cite journal
  306. Шаблон:Cite journal
  307. Шаблон:Cite journal
  308. Шаблон:Cite journal
  309. Шаблон:Cite journal
  310. Шаблон:Cite journal
  311. Шаблон:Cite journal
  312. Шаблон:Cite journal
  313. Шаблон:Cite journal
  314. Шаблон:Cite journal
  315. Шаблон:Cite journal
  316. Шаблон:Cite journal
  317. Шаблон:Cite journal
  318. Шаблон:Cite journal
  319. Шаблон:Cite journal
  320. Шаблон:Cite journal
  321. Шаблон:Cite journal
  322. Шаблон:Cite journal
  323. Шаблон:Cite journal
  324. Шаблон:Cite journal
  325. Шаблон:Cite journal
  326. Шаблон:Cite journal
  327. Шаблон:Cite journal
  328. Шаблон:Cite journal
  329. Шаблон:Cite journal
  330. Шаблон:Cite journal
  331. Шаблон:Cite journal
  332. Шаблон:Cite journal
  333. Шаблон:Cite journal
  334. Шаблон:Cite journal
  335. Шаблон:Cite journal
  336. Шаблон:Cite journal
  337. Шаблон:Cite journal
  338. Шаблон:Cite journal
  339. Шаблон:Cite journal
  340. Шаблон:Cite journal
  341. Шаблон:Cite journal
  342. Шаблон:Cite journal
  343. Шаблон:Cite journal
  344. Шаблон:Cite journal
  345. Шаблон:Cite journal
  346. Шаблон:Cite journal
  347. Шаблон:Cite journal
  348. Шаблон:Cite journal
  349. Шаблон:Cite journal
  350. Шаблон:Cite journal
  351. Шаблон:Cite journal
  352. Шаблон:Cite journal
  353. Шаблон:Cite journal
  354. Шаблон:Cite journal
  355. Шаблон:Cite journal
  356. Шаблон:Cite journal
  357. Шаблон:Cite journal
  358. Шаблон:Cite journal
  359. Шаблон:Cite journal
  360. Шаблон:Cite journal
  361. Шаблон:Cite journal
  362. Шаблон:Cite journal
  363. Шаблон:Cite journal
  364. Шаблон:Cite journal
  365. Шаблон:Cite journal
  366. Шаблон:Cite journal
  367. Шаблон:Cite journal
  368. Шаблон:Cite journal
  369. Шаблон:Cite journal
  370. Шаблон:Cite journal
  371. Шаблон:Cite journal
  372. Шаблон:Cite journal
  373. Шаблон:Cite journal
  374. Шаблон:Cite journal
  375. Шаблон:Cite journal
  376. Шаблон:Cite journal
  377. Шаблон:Cite journal
  378. Шаблон:Cite journal
  379. Шаблон:Cite journal
  380. Шаблон:Cite journal
  381. Шаблон:Cite journal
  382. Шаблон:Cite journal
  383. Шаблон:Cite journal
  384. Шаблон:Cite journal
  385. Шаблон:Cite journal
  386. Шаблон:Cite journal
  387. Шаблон:Cite journal
  388. Шаблон:Cite journal
  389. Шаблон:Cite journal
  390. Шаблон:Cite journal
  391. Шаблон:Cite journal
  392. Шаблон:Cite journal
  393. Шаблон:Cite journal
  394. Шаблон:Cite journal
  395. Шаблон:Cite journal
  396. Шаблон:Cite journal
  397. Шаблон:Cite book
  398. Шаблон:Cite journal
  399. Шаблон:Cite journal
  400. Шаблон:Cite journal
  401. Шаблон:Cite journal
  402. Шаблон:Cite journal
  403. Шаблон:Cite journal
  404. Шаблон:Cite journal
  405. Шаблон:Cite journal
  406. Шаблон:Cite journal
  407. Шаблон:Cite journal
  408. Шаблон:Cite journal
  409. Шаблон:Cite journal