Английская Википедия:3-4-3-12 tiling

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

3-4-3-12 tiling
Файл:2-uniform n2.svg
Type 2-uniform tiling
Vertex configuration Файл:Vertex type 3-4-3-12.svg Файл:Vertex type 3-12-12.svg
3.4.3.12 and 3.12.12
Symmetry p4m, [4,4], (*442)
Rotation symmetry p4, [4,4]+, (442)
Properties 2-uniform, 3-isohedral, 3-isotoxal

In geometry of the Euclidean plane, the 3-4-3-12 tiling is one of 20 2-uniform tilings of the Euclidean plane by regular polygons, containing regular triangles, squares, and dodecagons, arranged in two vertex configuration: 3.4.3.12 and 3.12.12.[1][2][3][4]

The 3.12.12 vertex figure alone generates a truncated hexagonal tiling, while the 3.4.3.12 only exists in this 2-uniform tiling. There are 2 3-uniform tilings that contain both of these vertex figures among one more.

It has square symmetry, p4m, [4,4], (*442). It is also called a demiregular tiling by some authors.

Circle Packing

This 2-uniform tiling can be used as a circle packing. Cyan circles are in contact with 3 other circles (1 cyan, 2 pink), corresponding to the V3.122 planigon, and pink circles are in contact with 4 other circles (2 cyan, 2 pink), corresponding to the V3.4.3.12 planigon. It is homeomorphic to the ambo operation on the tiling, with the cyan and pink gap polygons corresponding to the cyan and pink circles (one dimensional duals to the respective planigons). Both images coincide.

Circle Packing Ambo
Файл:Circle Packing of Small Star Square Dodecagonal Tiling.png Файл:Ambo of Small Square Dodecagonal Tiling.png

Dual tiling

The dual tiling has kite ('ties') and isosceles triangle faces, defined by face configurations: V3.4.3.12 and V3.12.12. The kites meet in sets of 4 around a center vertex, and the triangles are in pairs making planigon rhombi. Every four kites and four isosceles triangles make a square of side length <math>2+\sqrt{3}</math>.

Файл:Small Star Uniform 2 Tiling-2.png

Dual tiling
Файл:Semiplanigon V.3.4.3.12 (Desmos Generated).png
V3.4.3.12
Semiplanigon
Файл:Tiling face 3-12-12.svg
V3.12.12
Planigon

This is one of the only dual uniform tilings which only uses planigons (and semiplanigons) containing a 30° angle. Conversely, 3.4.3.12; 3.122 is one of the only uniform tilings in which every vertex is contained on a dodecagon.

Related tilings

It has 2 related 3-uniform tilings that include both 3.4.3.12 and 3.12.12 vertex figures:

Файл:3-uniform 8.svg
3.4.3.12, 3.12.12, 3.4.6.4
Файл:3-uniform 9.svg
3.4.3.12, 3.12.12, 3.3.4.12
Файл:Alternate Jewel Uniform 3 Tiling-2.png

V3.4.3.12, V3.12.12, V3.4.6.4
Файл:Alternating Petals Uniform 3 Tiling-2.png

V3.4.3.12, V3.12.12, V3.3.4.12

This tiling can be seen in a series as a lattice of 4n-gons starting from the square tiling. For 16-gons (n=4), the gaps can be filled with isogonal octagons and isosceles triangles.

4 8 12 16 20
Файл:Square lattice with squares.svg
Square tiling
Q
Файл:Square lattice with octagons.svg
Truncated square tiling
tQ
Файл:Square lattice with dodecagons.svg
3-4-3-12 tiling
Файл:Square lattice with 16-gons.svg
Twice-truncated square tiling
ttQ
Файл:Square lattice with 20-gons.svg
20-gons, squares
trapezoids, triangles

Notes

Шаблон:Reflist

References

External links

  1. Critchlow, pp. 62–67
  2. Grünbaum and Shephard 1986, pp. 65–67
  3. In Search of Demiregular Tilings #1
  4. Chavey (1989)