Английская Википедия:300 (number)
Шаблон:More citations needed Шаблон:Infobox number
300 (three hundred) is the natural number following 299 and preceding 301. Шаблон:TOC limit
Mathematical properties
The number 300 is a triangular number and the sum of a pair of twin primes (149 + 151), as well as the sum of ten consecutive primes (13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47). It is palindromic in 3 consecutive bases: 30010 = 6067 = 4548 = 3639, and also in base 13. Factorization is Шаблон:Nowrap 30064 + 1 is prime
Integers from 301 to 399
300s
301
302
303
303 = 3 × 101. 303 is a palindromic semiprime. The number of compositions of 10 which cannot be viewed as stacks is 303.[1]
304
305
Шаблон:Main 305 = 5 × 61. 305 is the convolution of the first 7 primes with themselves.[2]
306
306 = 2 × 32 × 17. 306 is the sum of four consecutive primes (71 + 73 + 79 + 83), pronic number,[3] and an untouchable number.[4]
307
308
308 = 22 × 7 × 11. 308 is a nontotient,[5] totient sum of the first 31 integers, heptagonal pyramidal number,[6] and the sum of two consecutive primes (151 + 157).
309
309 = 3 × 103, Blum integer, number of primes <= 211.[7]
310s
310
311
312
Шаблон:Main 312 = 23 × 3 × 13, idoneal number.
313
314
314 = 2 × 157. 314 is a nontotient,[8] smallest composite number in Somos-4 sequence.[9]
315
315 = 32 × 5 × 7 = <math>D_{7,3} \!</math> rencontres number, highly composite odd number, having 12 divisors.[10]
316
316 = 22 × 79, a centered triangular number[11] and a centered heptagonal number.[12]
317
317 is a prime number, Eisenstein prime with no imaginary part, Chen prime,[13] and a strictly non-palindromic number.
317 is the exponent (and number of ones) in the fourth base-10 repunit prime.[14]
318
319
319 = 11 × 29. 319 is the sum of three consecutive primes (103 + 107 + 109), Smith number,[15] cannot be represented as the sum of fewer than 19 fourth powers, happy number in base 10[16]
320s
320
320 = 26 × 5 = (25) × (2 × 5). 320 is a Leyland number,[17] and maximum determinant of a 10 by 10 matrix of zeros and ones.
321
321 = 3 × 107, a Delannoy number[18]
322
322 = 2 × 7 × 23. 322 is a sphenic,[19] nontotient, untouchable,[4] and a Lucas number.[20]
323
323 = 17 × 19. 323 is the sum of nine consecutive primes (19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53), the sum of the 13 consecutive primes (5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47), Motzkin number.[21] A Lucas and Fibonacci pseudoprime. See 323 (disambiguation)
324
324 = 22 × 34 = 182. 324 is the sum of four consecutive primes (73 + 79 + 83 + 89), totient sum of the first 32 integers, a square number,[22] and an untouchable number.[4]
325
325 = 52 × 13. 325 is a triangular number, hexagonal number,[23] nonagonal number,[24] centered nonagonal number.[25] 325 is the smallest number to be the sum of two squares in 3 different ways: 12 + 182, 62 + 172 and 102 + 152. 325 is also the smallest (and only known) 3-hyperperfect number.
326
326 = 2 × 163. 326 is a nontotient, noncototient,[26] and an untouchable number.[4] 326 is the sum of the 14 consecutive primes (3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47), lazy caterer number Шаблон:OEIS.
327
327 = 3 × 109. 327 is a perfect totient number,[27] number of compositions of 10 whose run-lengths are either weakly increasing or weakly decreasing[28]
328
328 = 23 × 41. 328 is a refactorable number,[29] and it is the sum of the first fifteen primes (2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47).
329
329 = 7 × 47. 329 is the sum of three consecutive primes (107 + 109 + 113), and a highly cototient number.[30]
330s
330
330 = 2 × 3 × 5 × 11. 330 is sum of six consecutive primes (43 + 47 + 53 + 59 + 61 + 67), pentatope number (and hence a binomial coefficient <math>\tbinom {11}4 </math>), a pentagonal number,[31] divisible by the number of primes below it, and a sparsely totient number.[32]
331
331 is a prime number, super-prime, cuban prime,[33] sum of five consecutive primes (59 + 61 + 67 + 71 + 73), centered pentagonal number,[34] centered hexagonal number,[35] and Mertens function returns 0.[36]
332
332 = 22 × 83, Mertens function returns 0.[36]
333
333 = 32 × 37, Mertens function returns 0,[36]
334
334 = 2 × 167, nontotient.[37]
335
335 = 5 × 67, divisible by the number of primes below it, number of Lyndon words of length 12.
336
336 = 24 × 3 × 7, untouchable number,[4] number of partitions of 41 into prime parts.[38]
337
337, prime number, emirp, permutable prime with 373 and 733, Chen prime,[13] star number
338
338 = 2 × 132, nontotient, number of square (0,1)-matrices without zero rows and with exactly 4 entries equal to 1.[39]
339
339 = 3 × 113, Ulam number[40]
340s
340
340 = 22 × 5 × 17, sum of eight consecutive primes (29 + 31 + 37 + 41 + 43 + 47 + 53 + 59), sum of ten consecutive primes (17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53), sum of the first four powers of 4 (41 + 42 + 43 + 44), divisible by the number of primes below it, nontotient, noncototient.[26] Number of regions formed by drawing the line segments connecting any two of the 12 perimeter points of a 3 times 3 grid of squares Шаблон:OEIS and Шаблон:OEIS.
341
341 = 11 × 31, sum of seven consecutive primes (37 + 41 + 43 + 47 + 53 + 59 + 61), octagonal number,[41] centered cube number,[42] super-Poulet number. 341 is the smallest Fermat pseudoprime; it is the least composite odd modulus m greater than the base b, that satisfies the Fermat property "bm−1 − 1 is divisible by m", for bases up to 128 of b = 2, 15, 60, 63, 78, and 108.
342
342 = 2 × 32 × 19, pronic number,[3] Untouchable number.[4]
343
343 = 73, the first nice Friedman number that is composite since 343 = (3 + 4)3. It is the only known example of x2+x+1 = y3, in this case, x=18, y=7. It is z3 in a triplet (x,y,z) such that x5 + y2 = z3.
344
344 = 23 × 43, octahedral number,[43] noncototient,[26] totient sum of the first 33 integers, refactorable number.[29]
345
345 = 3 × 5 × 23, sphenic number,[19] idoneal number
346
346 = 2 × 173, Smith number,[15] noncototient.[26]
347
347 is a prime number, emirp, safe prime,[44] Eisenstein prime with no imaginary part, Chen prime,[13] Friedman prime since 347 = 73 + 4, and a strictly non-palindromic number.
348
348 = 22 × 3 × 29, sum of four consecutive primes (79 + 83 + 89 + 97), refactorable number.[29]
349
349, prime number, sum of three consecutive primes (109 + 113 + 127), 5349 - 4349 is a prime number.[45]
350s
350
350 = 2 × 52 × 7 = <math>\left\{ {7 \atop 4} \right\}</math>, primitive semiperfect number,[46] divisible by the number of primes below it, nontotient, a truncated icosahedron of frequency 6 has 350 hexagonal faces and 12 pentagonal faces.
351
351 = 33 × 13, triangular number, sum of five consecutive primes (61 + 67 + 71 + 73 + 79), member of Padovan sequence[47] and number of compositions of 15 into distinct parts.[48]
352
352 = 25 × 11, the number of n-Queens Problem solutions for n = 9. It is the sum of two consecutive primes (173 + 179), lazy caterer number Шаблон:OEIS.
353
354
354 = 2 × 3 × 59 = 14 + 24 + 34 + 44,[49][50] sphenic number,[19] nontotient, also SMTP code meaning start of mail input. It is also sum of absolute value of the coefficients of Conway's polynomial.
355
355 = 5 × 71, Smith number,[15] Mertens function returns 0,[36] divisible by the number of primes below it.
The numerator of the best simplified rational approximation of pi having a denominator of four digits or fewer. This fraction (355/113) is known as Milü and provides an extremely accurate approximation for pi.
356
356 = 22 × 89, Mertens function returns 0.[36]
357
357 = 3 × 7 × 17, sphenic number.[19]
358
358 = 2 × 179, sum of six consecutive primes (47 + 53 + 59 + 61 + 67 + 71), Mertens function returns 0,[36] number of ways to partition {1,2,3,4,5} and then partition each cell (block) into subcells.[51]
359
360s
360
361
361 = 192, centered triangular number,[11] centered octagonal number, centered decagonal number,[52] member of the Mian–Chowla sequence;[53] also the number of positions on a standard 19 x 19 Go board.
362
362 = 2 × 181 = σ2(19): sum of squares of divisors of 19,[54] Mertens function returns 0,[36] nontotient, noncototient.[26]
363
364
364 = 22 × 7 × 13, tetrahedral number,[55] sum of twelve consecutive primes (11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53), Mertens function returns 0,[36] nontotient. It is a repdigit in base 3 (111111), base 9 (444), base 25 (EE), base 27 (DD), base 51 (77) and base 90 (44), the sum of six consecutive powers of 3 (1 + 3 + 9 + 27 + 81 + 243), and because it is the twelfth non-zero tetrahedral number.[56]
365
366
366 = 2 × 3 × 61, sphenic number,[19] Mertens function returns 0,[36] noncototient,[26] number of complete partitions of 20,[57] 26-gonal and 123-gonal. Also the number of days in a Leap Year.
367
367 is a prime number, Perrin number,[58] happy number, prime index prime and a strictly non-palindromic number.
368
368 = 24 × 23. It is also a Leyland number.[17]
369
370s
370
370 = 2 × 5 × 37, sphenic number,[19] sum of four consecutive primes (83 + 89 + 97 + 101), nontotient, with 369 part of a Ruth–Aaron pair with only distinct prime factors counted, Base 10 Armstrong number since 33 + 73 + 03 = 370.
371
371 = 7 × 53, sum of three consecutive primes (113 + 127 + 131), sum of seven consecutive primes (41 + 43 + 47 + 53 + 59 + 61 + 67), sum of the primes from its least to its greatest prime factor Шаблон:OEIS, the next such composite number is 2935561623745, Armstrong number since 33 + 73 + 13 = 371.
372
372 = 22 × 3 × 31, sum of eight consecutive primes (31 + 37 + 41 + 43 + 47 + 53 + 59 + 61), noncototient,[26] untouchable number,[4] refactorable number.[29]
373
373, prime number, balanced prime,[59] two-sided prime, sum of five consecutive primes (67 + 71 + 73 + 79 + 83), permutable prime with 337 and 733, palindromic prime in 3 consecutive bases: 5658 = 4549 = 37310 and also in base 4: 113114.
374
374 = 2 × 11 × 17, sphenic number,[19] nontotient, 3744 + 1 is prime.[60]
375
375 = 3 × 53, number of regions in regular 11-gon with all diagonals drawn.[61]
376
376 = 23 × 47, pentagonal number,[31] 1-automorphic number,[62] nontotient, refactorable number.[29] There is a math puzzle in which when 376 is squared, 376 is also the last three digits, as 376 * 376 = 141376 [63]
377
377 = 13 × 29, Fibonacci number, a centered octahedral number,[64] a Lucas and Fibonacci pseudoprime, the sum of the squares of the first six primes.
378
378 = 2 × 33 × 7, triangular number, cake number, hexagonal number,[23] Smith number.[15]
379
379 is a prime number, Chen prime,[13] lazy caterer number Шаблон:OEIS and a happy number in base 10. It is the sum of the 15 consecutive primes (3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53). 379! - 1 is prime.
380s
380
380 = 22 × 5 × 19, pronic number,[3] Number of regions into which a figure made up of a row of 6 adjacent congruent rectangles is divided upon drawing diagonals of all possible rectangles Шаблон:Oeis and Шаблон:Oeis.
381
381 = 3 × 127, palindromic in base 2 and base 8.
It is the sum of the first 16 prime numbers (2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53).
382
382 = 2 × 191, sum of ten consecutive primes (19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53 + 59), Smith number.[15]
383
383, prime number, safe prime,[44] Woodall prime,[65] Thabit number, Eisenstein prime with no imaginary part, palindromic prime. It is also the first number where the sum of a prime and the reversal of the prime is also a prime.[66] 4383 - 3383 is prime.
384
385
385 = 5 × 7 × 11, sphenic number,[19] square pyramidal number,[67] the number of integer partitions of 18.
385 = 102 + 92 + 82 + 72 + 62 + 52 + 42 + 32 + 22 + 12
386
386 = 2 × 193, nontotient, noncototient,[26] centered heptagonal number,[12] number of surface points on a cube with edge-length 9.[68]
387
387 = 32 × 43, number of graphical partitions of 22.[69]
388
388 = 22 × 97 = solution to postage stamp problem with 6 stamps and 6 denominations,[70] number of uniform rooted trees with 10 nodes.[71]
389
389, prime number, emirp, Eisenstein prime with no imaginary part, Chen prime,[13] highly cototient number,[30] strictly non-palindromic number. Smallest conductor of a rank 2 Elliptic curve.
390s
390
390 = 2 × 3 × 5 × 13, sum of four consecutive primes (89 + 97 + 101 + 103), nontotient,
- <math>\sum_{n=0}^{10}{390}^{n}</math> is prime[72]
391
391 = 17 × 23, Smith number,[15] centered pentagonal number.[34]
392
392 = 23 × 72, Achilles number.
393
393 = 3 × 131, Blum integer, Mertens function returns 0.[36]
394
394 = 2 × 197 = S5 a Schröder number,[73] nontotient, noncototient.[26]
395
395 = 5 × 79, sum of three consecutive primes (127 + 131 + 137), sum of five consecutive primes (71 + 73 + 79 + 83 + 89), number of (unordered, unlabeled) rooted trimmed trees with 11 nodes.[74]
396
396 = 22 × 32 × 11, sum of twin primes (197 + 199), totient sum of the first 36 integers, refactorable number,[29] Harshad number, digit-reassembly number.
397
397, prime number, cuban prime,[33] centered hexagonal number.[35]
398
398 = 2 × 199, nontotient.
- <math>\sum_{n=0}^{10}{398}^{n}</math> is prime[72]
399
399 = 3 × 7 × 19, sphenic number,[19] smallest Lucas–Carmichael number, Leyland number of the second kind. 399! + 1 is prime.
References
Шаблон:Reflist Шаблон:Integers
- ↑ Шаблон:Cite OEIS
- ↑ Шаблон:Cite OEIS
- ↑ 3,0 3,1 3,2 Шаблон:Cite OEIS
- ↑ 4,0 4,1 4,2 4,3 4,4 4,5 4,6 Шаблон:Cite OEIS
- ↑ {{Cite OEIS|A005277|Nontotients: even numbers k such that phi(m) = k has no solution
- ↑ Шаблон:Cite OEIS
- ↑ Шаблон:Cite OEIS
- ↑ {{Cite OEIS|A005277|Nontotients: even numbers k such that phi(m) = k has no solution
- ↑ Шаблон:Cite OEIS
- ↑ Шаблон:Cite web
- ↑ 11,0 11,1 Шаблон:Cite OEIS
- ↑ 12,0 12,1 Шаблон:Cite OEIS
- ↑ 13,0 13,1 13,2 13,3 13,4 Шаблон:Cite OEIS
- ↑ Guy, Richard; Unsolved Problems in Number Theory, p. 7 Шаблон:ISBN
- ↑ 15,0 15,1 15,2 15,3 15,4 15,5 Шаблон:Cite OEIS
- ↑ Шаблон:Cite OEIS
- ↑ 17,0 17,1 Шаблон:Cite OEIS
- ↑ Шаблон:Cite OEIS
- ↑ 19,0 19,1 19,2 19,3 19,4 19,5 19,6 19,7 19,8 Шаблон:Cite OEIS
- ↑ Шаблон:Cite OEIS
- ↑ Шаблон:Cite OEIS
- ↑ Шаблон:Cite web
- ↑ 23,0 23,1 Шаблон:Cite OEIS
- ↑ Шаблон:Cite OEIS
- ↑ Шаблон:Cite OEIS
- ↑ 26,0 26,1 26,2 26,3 26,4 26,5 26,6 26,7 26,8 Шаблон:Cite OEIS
- ↑ Шаблон:Cite OEIS
- ↑ Шаблон:Cite OEIS
- ↑ 29,0 29,1 29,2 29,3 29,4 29,5 Шаблон:Cite OEIS
- ↑ 30,0 30,1 Шаблон:Cite OEIS
- ↑ 31,0 31,1 Шаблон:Cite OEIS
- ↑ Шаблон:Cite OEIS
- ↑ 33,0 33,1 Шаблон:Cite OEIS
- ↑ 34,0 34,1 Шаблон:Cite OEIS
- ↑ 35,0 35,1 Шаблон:Cite OEIS
- ↑ 36,0 36,1 36,2 36,3 36,4 36,5 36,6 36,7 36,8 36,9 Шаблон:Cite OEIS
- ↑ Шаблон:Cite OEIS
- ↑ Шаблон:Cite OEIS
- ↑ Шаблон:Cite OEIS
- ↑ Шаблон:Cite OEIS
- ↑ Шаблон:Cite OEIS
- ↑ Шаблон:Cite OEIS
- ↑ Шаблон:Cite OEIS
- ↑ 44,0 44,1 Шаблон:Cite OEIS
- ↑ Шаблон:Cite OEIS
- ↑ Шаблон:Cite OEIS
- ↑ Шаблон:Cite OEIS
- ↑ Шаблон:Cite OEIS
- ↑ Шаблон:Cite OEIS
- ↑ Шаблон:Cite OEIS
- ↑ Шаблон:Cite OEIS
- ↑ Шаблон:Cite OEIS
- ↑ Шаблон:Cite OEIS
- ↑ Шаблон:Cite OEIS
- ↑ Шаблон:Cite OEIS
- ↑ Шаблон:Cite OEIS
- ↑ Шаблон:Cite OEIS
- ↑ Шаблон:Cite OEIS
- ↑ Шаблон:Cite OEIS
- ↑ Шаблон:Cite OEIS
- ↑ Шаблон:Cite OEIS
- ↑ Шаблон:Cite OEIS
- ↑ https://www.mathsisfun.com/puzzles/algebra-cow-solution.html
- ↑ Шаблон:Cite OEIS
- ↑ Шаблон:Cite OEIS
- ↑ Шаблон:Cite OEIS
- ↑ Шаблон:Cite OEIS
- ↑ Шаблон:Cite OEIS
- ↑ Шаблон:Cite OEIS
- ↑ Шаблон:Cite OEIS
- ↑ Шаблон:Cite OEIS
- ↑ 72,0 72,1 Шаблон:Cite OEIS
- ↑ Шаблон:Cite OEIS
- ↑ Шаблон:Cite OEIS