Шаблон:Short description
Baer functions <math>B_p^q(z)</math> and <math>C_p^q(z)</math>, named after Karl Baer,[1] are solutions of the Baer differential equation
- <math>
\frac{d^2B}{dz^2} + \frac{1}{2}\left[\frac{1}{z-b} + \frac{1}{z-c} \right]\frac{dB}{dz} - \left[\frac{p(p+1)z + q(b+c)}{(z-b)(z-c)} \right]B = 0
</math>
which arises when separation of variables is applied to the Laplace equation in paraboloidal coordinates. The Baer functions are defined as the series solutions about <math>z = 0</math> which satisfy <math>B_p^q(0) = 0</math>, <math>C_p^q(0) = 1</math>.[2] By substituting a power series Ansatz into the differential equation, formal series can be constructed for the Baer functions.[3] For special values of <math>p</math> and <math>q</math>, simpler solutions may exist. For instance,
- <math>
B_0^0(z) = \ln \left[ \frac{z+\sqrt{(z-b)(z-c)}-(b+c)/2}{\sqrt{bc} - (b+c)/2} \right]
</math>
Moreover, Mathieu functions are special-case solutions of the Baer equation, since the latter reduces to the Mathieu differential equation when <math>b = 0</math> and <math>c = 1</math>, and making the change of variable <math>z = \cos^2 t</math>.
Like the Mathieu differential equation, the Baer equation has two regular singular points (at <math>z = b</math> and <math>z = c</math>), and one irregular singular point at infinity. Thus, in contrast with many other special functions of mathematical physics, Baer functions cannot in general be expressed in terms of hypergeometric functions.
The Baer wave equation is a generalization which results from separating variables in the Helmholtz equation in paraboloidal coordinates:
- <math>
\frac{d^2B}{dz^2} + \frac{1}{2}\left[\frac{1}{z-b} + \frac{1}{z-c} \right]\frac{dB}{dz} + \left[\frac{k^2 z^2 - p(p+1)z - q(b+c)}{(z-b)(z-c)} \right]B = 0
</math>
which reduces to the original Baer equation when <math>k = 0</math>.
References
Шаблон:Reflist
Bibliography
External links
Партнерские ресурсы |
---|
Криптовалюты |
|
---|
Магазины |
|
---|
Хостинг |
|
---|
Разное |
- Викиум - Онлайн-тренажер для мозга
- Like Центр - Центр поддержки и развития предпринимательства.
- Gamersbay - лучший магазин по бустингу для World of Warcraft.
- Ноотропы OmniMind N°1 - Усиливает мозговую активность. Повышает мотивацию. Улучшает память.
- Санкт-Петербургская школа телевидения - это федеральная сеть образовательных центров, которая имеет филиалы в 37 городах России.
- Lingualeo.com — интерактивный онлайн-сервис для изучения и практики английского языка в увлекательной игровой форме.
- Junyschool (Джунискул) – международная школа программирования и дизайна для детей и подростков от 5 до 17 лет, где ученики осваивают компьютерную грамотность, развивают алгоритмическое и креативное мышление, изучают основы программирования и компьютерной графики, создают собственные проекты: игры, сайты, программы, приложения, анимации, 3D-модели, монтируют видео.
- Умназия - Интерактивные онлайн-курсы и тренажеры для развития мышления детей 6-13 лет
- SkillBox - это один из лидеров российского рынка онлайн-образования. Среди партнеров Skillbox ведущий разработчик сервисного дизайна AIC, медиа-компания Yoola, первое и самое крупное русскоязычное аналитическое агентство Tagline, онлайн-школа дизайна и иллюстрации Bang! Bang! Education, оператор PR-рынка PACO, студия рисования Draw&Go, агентство performance-маркетинга Ingate, scrum-студия Sibirix, имидж-лаборатория Персона.
- «Нетология» — это университет по подготовке и дополнительному обучению специалистов в области интернет-маркетинга, управления проектами и продуктами, дизайна, Data Science и разработки. В рамках Нетологии студенты получают ценные теоретические знания от лучших экспертов Рунета, выполняют практические задания на отработку полученных навыков, общаются с экспертами и единомышленниками. Познакомиться со всеми продуктами подробнее можно на сайте https://netology.ru, линейка курсов и профессий постоянно обновляется.
- StudyBay Brazil – это онлайн биржа для португалоговорящих студентов и авторов! Студент получает уникальную работу любого уровня сложности и больше свободного времени, в то время как у автора появляется дополнительный заработок и бесценный опыт.
- Автор24 — самая большая в России площадка по написанию учебных работ: контрольные и курсовые работы, дипломы, рефераты, решение задач, отчеты по практике, а так же любой другой вид работы. Сервис сотрудничает с более 70 000 авторов. Более 1 000 000 работ уже выполнено.
- StudyBay – это онлайн биржа для англоязычных студентов и авторов! Студент получает уникальную работу любого уровня сложности и больше свободного времени, в то время как у автора появляется дополнительный заработок и бесценный опыт.
|
---|
- ↑ Шаблон:Cite book
- ↑ Willatzen and Lew Van Yoon (2011), p. 305
- ↑ Moon & Spencer (1961), pp. 194–197