Английская Википедия:Bilinear form

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short description In mathematics, a bilinear form is a bilinear map Шаблон:Math on a vector space Шаблон:Mvar (the elements of which are called vectors) over a field K (the elements of which are called scalars). In other words, a bilinear form is a function Шаблон:Math that is linear in each argument separately:

The dot product on <math>\R^n</math> is an example of a bilinear form.[1]

The definition of a bilinear form can be extended to include modules over a ring, with linear maps replaced by module homomorphisms.

When Шаблон:Mvar is the field of complex numbers Шаблон:Math, one is often more interested in sesquilinear forms, which are similar to bilinear forms but are conjugate linear in one argument.

Coordinate representation

Let Шаблон:Math be an Шаблон:Mvar-dimensional vector space with basis Шаблон:Math.

The Шаблон:Math matrix A, defined by Шаблон:Math is called the matrix of the bilinear form on the basis Шаблон:Math.

If the Шаблон:Math matrix Шаблон:Math represents a vector Шаблон:Math with respect to this basis, and similarly, the Шаблон:Math matrix Шаблон:Math represents another vector Шаблон:Math, then: <math display="block">B(\mathbf{x}, \mathbf{y}) = \mathbf{x}^\textsf{T} A\mathbf{y} = \sum_{i,j=1}^n x_i A_{ij} y_j. </math>

A bilinear form has different matrices on different bases. However, the matrices of a bilinear form on different bases are all congruent. More precisely, if Шаблон:Math is another basis of Шаблон:Mvar, then <math display="block">\mathbf{f}_j=\sum_{i=1}^n S_{i,j}\mathbf{e}_i,</math> where the <math>S_{i,j}</math> form an invertible matrix Шаблон:Mvar. Then, the matrix of the bilinear form on the new basis is Шаблон:Math.

Maps to the dual space

Every bilinear form Шаблон:Math on Шаблон:Mvar defines a pair of linear maps from Шаблон:Mvar to its dual space Шаблон:Math. Define Шаблон:Math by Шаблон:Block indent Шаблон:Block indent This is often denoted as Шаблон:Block indent Шаблон:Block indent where the dot ( ⋅ ) indicates the slot into which the argument for the resulting linear functional is to be placed (see Currying).

For a finite-dimensional vector space Шаблон:Mvar, if either of Шаблон:Math or Шаблон:Math is an isomorphism, then both are, and the bilinear form Шаблон:Math is said to be nondegenerate. More concretely, for a finite-dimensional vector space, non-degenerate means that every non-zero element pairs non-trivially with some other element:

<math>B(x,y)=0 </math> for all <math>y \in V</math> implies that Шаблон:Math and
<math>B(x,y)=0 </math> for all <math>x \in V</math> implies that Шаблон:Math.

The corresponding notion for a module over a commutative ring is that a bilinear form is Шаблон:Visible anchor if Шаблон:Math is an isomorphism. Given a finitely generated module over a commutative ring, the pairing may be injective (hence "nondegenerate" in the above sense) but not unimodular. For example, over the integers, the pairing Шаблон:Math is nondegenerate but not unimodular, as the induced map from Шаблон:Math to Шаблон:Math is multiplication by 2.

If Шаблон:Mvar is finite-dimensional then one can identify Шаблон:Mvar with its double dual Шаблон:Math. One can then show that Шаблон:Math is the transpose of the linear map Шаблон:Math (if Шаблон:Mvar is infinite-dimensional then Шаблон:Math is the transpose of Шаблон:Math restricted to the image of Шаблон:Mvar in Шаблон:Math). Given Шаблон:Math one can define the transpose of Шаблон:Math to be the bilinear form given by Шаблон:Block indent

The left radical and right radical of the form Шаблон:Math are the kernels of Шаблон:Math and Шаблон:Math respectively;Шаблон:Sfn they are the vectors orthogonal to the whole space on the left and on the right.Шаблон:Sfn

If Шаблон:Mvar is finite-dimensional then the rank of Шаблон:Math is equal to the rank of Шаблон:Math. If this number is equal to Шаблон:Math then Шаблон:Math and Шаблон:Math are linear isomorphisms from Шаблон:Mvar to Шаблон:Math. In this case Шаблон:Math is nondegenerate. By the rank–nullity theorem, this is equivalent to the condition that the left and equivalently right radicals be trivial. For finite-dimensional spaces, this is often taken as the definition of nondegeneracy: Шаблон:Block indent

Given any linear map Шаблон:Math one can obtain a bilinear form B on V via Шаблон:Block indent

This form will be nondegenerate if and only if Шаблон:Math is an isomorphism.

If Шаблон:Mvar is finite-dimensional then, relative to some basis for Шаблон:Mvar, a bilinear form is degenerate if and only if the determinant of the associated matrix is zero. Likewise, a nondegenerate form is one for which the determinant of the associated matrix is non-zero (the matrix is non-singular). These statements are independent of the chosen basis. For a module over a commutative ring, a unimodular form is one for which the determinant of the associate matrix is a unit (for example 1), hence the term; note that a form whose matrix determinant is non-zero but not a unit will be nondegenerate but not unimodular, for example Шаблон:Math over the integers.

Symmetric, skew-symmetric and alternating forms

We define a bilinear form to be

If the characteristic of Шаблон:Mvar is not 2 then the converse is also true: every skew-symmetric form is alternating. However, if Шаблон:Math then a skew-symmetric form is the same as a symmetric form and there exist symmetric/skew-symmetric forms that are not alternating.

A bilinear form is symmetric (respectively skew-symmetric) if and only if its coordinate matrix (relative to any basis) is symmetric (respectively skew-symmetric). A bilinear form is alternating if and only if its coordinate matrix is skew-symmetric and the diagonal entries are all zero (which follows from skew-symmetry when Шаблон:Math).

A bilinear form is symmetric if and only if the maps Шаблон:Math are equal, and skew-symmetric if and only if they are negatives of one another. If Шаблон:Math then one can decompose a bilinear form into a symmetric and a skew-symmetric part as follows <math display="block">B^{+} = \tfrac{1}{2} (B + {}^{\text{t}}B) \qquad B^{-} = \tfrac{1}{2} (B - {}^{\text{t}}B) ,</math> where Шаблон:Math is the transpose of Шаблон:Math (defined above).

Derived quadratic form

For any bilinear form Шаблон:Math, there exists an associated quadratic form Шаблон:Math defined by Шаблон:Math.

When Шаблон:Math, the quadratic form Q is determined by the symmetric part of the bilinear form B and is independent of the antisymmetric part. In this case there is a one-to-one correspondence between the symmetric part of the bilinear form and the quadratic form, and it makes sense to speak of the symmetric bilinear form associated with a quadratic form.

When Шаблон:Math and Шаблон:Math, this correspondence between quadratic forms and symmetric bilinear forms breaks down.

Reflexivity and orthogonality

Шаблон:Block indent Шаблон:Block indent

A bilinear form Шаблон:Math is reflexive if and only if it is either symmetric or alternating.Шаблон:Sfn In the absence of reflexivity we have to distinguish left and right orthogonality. In a reflexive space the left and right radicals agree and are termed the kernel or the radical of the bilinear form: the subspace of all vectors orthogonal with every other vector. A vector Шаблон:Math, with matrix representation Шаблон:Math, is in the radical of a bilinear form with matrix representation Шаблон:Math, if and only if Шаблон:Math. The radical is always a subspace of Шаблон:Math. It is trivial if and only if the matrix Шаблон:Math is nonsingular, and thus if and only if the bilinear form is nondegenerate.

Suppose Шаблон:Mvar is a subspace. Define the orthogonal complementШаблон:Sfn <math display="block"> W^{\perp} = \left\{\mathbf{v} \mid B(\mathbf{v}, \mathbf{w}) = 0 \text{ for all } \mathbf{w} \in W\right\} .</math>

For a non-degenerate form on a finite-dimensional space, the map Шаблон:Math is bijective, and the dimension of Шаблон:Math is Шаблон:Math.

Different spaces

Much of the theory is available for a bilinear mapping from two vector spaces over the same base field to that field Шаблон:Block indent

Here we still have induced linear mappings from Шаблон:Mvar to Шаблон:Math, and from Шаблон:Mvar to Шаблон:Math. It may happen that these mappings are isomorphisms; assuming finite dimensions, if one is an isomorphism, the other must be. When this occurs, B is said to be a perfect pairing.

In finite dimensions, this is equivalent to the pairing being nondegenerate (the spaces necessarily having the same dimensions). For modules (instead of vector spaces), just as how a nondegenerate form is weaker than a unimodular form, a nondegenerate pairing is a weaker notion than a perfect pairing. A pairing can be nondegenerate without being a perfect pairing, for instance Шаблон:Math via Шаблон:Math is nondegenerate, but induces multiplication by 2 on the map Шаблон:Math.

Terminology varies in coverage of bilinear forms. For example, F. Reese Harvey discusses "eight types of inner product".Шаблон:Sfn To define them he uses diagonal matrices Aij having only +1 or −1 for non-zero elements. Some of the "inner products" are symplectic forms and some are sesquilinear forms or Hermitian forms. Rather than a general field Шаблон:Mvar, the instances with real numbers Шаблон:Math, complex numbers Шаблон:Math, and quaternions Шаблон:Math are spelled out. The bilinear form <math display="block">\sum_{k=1}^p x_k y_k - \sum_{k=p+1}^n x_k y_k </math> is called the real symmetric case and labeled Шаблон:Math, where Шаблон:Math. Then he articulates the connection to traditional terminology:Шаблон:Sfn Шаблон:Quote

Relation to tensor products

By the universal property of the tensor product, there is a canonical correspondence between bilinear forms on Шаблон:Mvar and linear maps Шаблон:Math. If Шаблон:Math is a bilinear form on Шаблон:Mvar the corresponding linear map is given by Шаблон:Block indent In the other direction, if Шаблон:Math is a linear map the corresponding bilinear form is given by composing F with the bilinear map Шаблон:Math that sends Шаблон:Math to Шаблон:Math.

The set of all linear maps Шаблон:Math is the dual space of Шаблон:Math, so bilinear forms may be thought of as elements of Шаблон:Math which (when Шаблон:Mvar is finite-dimensional) is canonically isomorphic to Шаблон:Math.

Likewise, symmetric bilinear forms may be thought of as elements of Шаблон:Math (dual of the second symmetric power of Шаблон:Math) and alternating bilinear forms as elements of Шаблон:Math (the second exterior power of Шаблон:Math). If Шаблон:Math, Шаблон:Math.

On normed vector spaces

Definition: A bilinear form on a normed vector space Шаблон:Math is bounded, if there is a constant Шаблон:Math such that for all Шаблон:Math, <math display="block"> B ( \mathbf{u} , \mathbf{v}) \le C \left\| \mathbf{u} \right\| \left\|\mathbf{v} \right\| .</math>

Definition: A bilinear form on a normed vector space Шаблон:Math is elliptic, or coercive, if there is a constant Шаблон:Math such that for all Шаблон:Math, <math display="block"> B ( \mathbf{u} , \mathbf{u}) \ge c \left\| \mathbf{u} \right\| ^2 .</math>

Generalization to modules

Given a ring Шаблон:Mvar and a right [[Module (mathematics)|Шаблон:Mvar-module]] Шаблон:Math and its dual module Шаблон:Math, a mapping Шаблон:Math is called a bilinear form if Шаблон:Block indent Шаблон:Block indent Шаблон:Block indent for all Шаблон:Math, all Шаблон:Math and all Шаблон:Math.

The mapping Шаблон:Math is known as the natural pairing, also called the canonical bilinear form on Шаблон:Math.Шаблон:Sfn

A linear map Шаблон:Math induces the bilinear form Шаблон:Math, and a linear map Шаблон:Math induces the bilinear form Шаблон:Math.

Conversely, a bilinear form Шаблон:Math induces the R-linear maps Шаблон:Math and Шаблон:Math. Here, Шаблон:Math denotes the double dual of Шаблон:Math.

See also

Шаблон:Cmn

Citations

Шаблон:Reflist

References

External links

Шаблон:Commonscat

Шаблон:Functional Analysis Шаблон:PlanetMath attribution