Английская Википедия:Concave function

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short description Шаблон:Use American English

In mathematics, a concave function is one for which the value at any convex combination of elements in the domain is greater than or equal to the convex combination of the values at the endpoints. Equivalently, a concave function is any function for which the hypograph is convex. The class of concave functions is in a sense the opposite of the class of a convex functions. A concave function is also synonymously called concave downwards, concave down, convex upwards, convex cap, or upper convex.

Definition

A real-valued function <math>f</math> on an interval (or, more generally, a convex set in vector space) is said to be concave if, for any <math>x</math> and <math>y</math> in the interval and for any <math>\alpha \in [0,1]</math>,[1]

<math>f((1-\alpha )x+\alpha y)\geq (1-\alpha ) f(x)+\alpha f(y)</math>

A function is called strictly concave if

<math>f((1-\alpha )x + \alpha y) > (1-\alpha) f(x) + \alpha f(y)\,</math>

for any <math>\alpha \in (0,1)</math> and <math>x \neq y</math>.

For a function <math>f: \mathbb{R} \to \mathbb{R}</math>, this second definition merely states that for every <math>z</math> strictly between <math>x</math> and <math>y</math>, the point <math>(z, f(z))</math> on the graph of <math>f</math> is above the straight line joining the points <math>(x, f(x))</math> and <math>(y, f(y))</math>.

Файл:ConcaveDef.png

A function <math>f</math> is quasiconcave if the upper contour sets of the function <math>S(a)=\{x: f(x)\geq a\}</math> are convex sets.[2]

Properties

Functions of a single variable

  1. A differentiable function Шаблон:Mvar is (strictly) concave on an interval if and only if its derivative function Шаблон:Mvar is (strictly) monotonically decreasing on that interval, that is, a concave function has a non-increasing (decreasing) slope.[3][4]
  2. Points where concavity changes (between concave and convex) are inflection points.[5]
  3. If Шаблон:Mvar is twice-differentiable, then Шаблон:Mvar is concave if and only if Шаблон:Mvar is non-positive (or, informally, if the "acceleration" is non-positive). If its second derivative is negative then it is strictly concave, but the converse is not true, as shown by Шаблон:Math.
  4. If Шаблон:Mvar is concave and differentiable, then it is bounded above by its first-order Taylor approximation:[2] <math display="block">f(y) \leq f(x) + f'(x)[y-x]</math>
  5. A Lebesgue measurable function on an interval Шаблон:Math is concave if and only if it is midpoint concave, that is, for any Шаблон:Mvar and Шаблон:Mvar in Шаблон:Math <math display="block"> f\left( \frac{x+y}2 \right) \ge \frac{f(x) + f(y)}2</math>
  6. If a function Шаблон:Mvar is concave, and Шаблон:Math, then Шаблон:Mvar is subadditive on <math>[0,\infty)</math>. Proof:
    • Since Шаблон:Mvar is concave and Шаблон:Math, letting Шаблон:Math we have <math display="block">f(tx) = f(tx+(1-t)\cdot 0) \ge t f(x)+(1-t)f(0) \ge t f(x) .</math>
    • For <math>a,b\in[0,\infty)</math>: <math display="block">f(a) + f(b) = f \left((a+b) \frac{a}{a+b} \right) + f \left((a+b) \frac{b}{a+b} \right)

\ge \frac{a}{a+b} f(a+b) + \frac{b}{a+b} f(a+b) = f(a+b)</math>

Functions of n variables

  1. A function Шаблон:Mvar is concave over a convex set if and only if the function Шаблон:Mvar is a convex function over the set.
  2. The sum of two concave functions is itself concave and so is the pointwise minimum of two concave functions, i.e. the set of concave functions on a given domain form a semifield.
  3. Near a strict local maximum in the interior of the domain of a function, the function must be concave; as a partial converse, if the derivative of a strictly concave function is zero at some point, then that point is a local maximum.
  4. Any local maximum of a concave function is also a global maximum. A strictly concave function will have at most one global maximum.

Examples

  • The functions <math>f(x)=-x^2</math> and <math>g(x)=\sqrt{x}</math> are concave on their domains, as their second derivatives <math>f(x) = -2</math> and <math display="inline">g(x) =-\frac{1}{4 x^{3/2}}</math> are always negative.
  • The logarithm function <math>f(x) = \log{x}</math> is concave on its domain <math>(0,\infty)</math>, as its derivative <math>\frac{1}{x}</math> is a strictly decreasing function.
  • Any affine function <math>f(x)=ax+b</math> is both concave and convex, but neither strictly-concave nor strictly-convex.
  • The sine function is concave on the interval <math>[0, \pi]</math>.
  • The function <math>f(B) = \log |B|</math>, where <math>|B|</math> is the determinant of a nonnegative-definite matrix B, is concave.[6]

Applications

See also

References

Шаблон:Reflist

Further References

Шаблон:Calculus topics Шаблон:Convex analysis and variational analysis Шаблон:Authority control